
RELATIONAL COMPLETENESS OF DATA BASE SUBLANGUAGES

E. F. Codd

IBM Research Laboratory
San Jose, California

ABSTRACT: In the near future, we can expect a great variety of languages
to be proposed for interrogating and updating data bases. This paper
attempts to provide a theoretical basis which may be used to determine how
complete a selection capability is provided in a proposed data sublanguage
independently of any host language in which the sublanguage may be embedded.

A relational algebra and a relational calculus are defined. Then, an
algorithm is presented for reducing an arbitrary relation-defining expression
(based on the calculus) into a semantically equivalent expression of the
relational algebra.

Finally, some opinions are stated regarding the relative merits of calculus-
oriented versus algebra-oriented data sublanguages from the standpoint of
optimal search and highly discriminating authorization schemes.

RJ 987 Hl7041)

March 6, 1972
Computer Sciences

1

1. INTRODUCTION

In the near future we can expect a great variety of languages to be

proposed for interrogating and updating data bases. When the computation-

oriented components of such a language are removed, we refer to the remaining

storage and retrieval oriented sublanguage as a data sublanguaqe. A data

sublanguage may be embedded in a general purpose programming language, or

it may be stand-alone -- in which case, it is commonly called a query

language (even though it may contain provision for simple updating as well

as querying).

This paper attempts to establish a theoretical basis which may be

used to determine how complete a selection capability is provided in a

proposed data sublanguage independently of any host language in which the

sublanguage may be embedded. The selection capability under discussion is

a basic non-statistical one. In a practical environment it would need to

be augmented by a counting and summing capability, together with the

capability of invoking any one of a finite set of library functions tailored

to that environment.

In previous papers Cl 4 we proposed a relational model of data. With

this model any formatted data base is viewed as a collection of time-varying

relations of assorted degrees. In Section 2 of this paper, we define a

collection of operations on relations , and this collection is called a

relational algebra. This algebra may be used for a variety of purposes. For

example, a query language could be directly based on it (however, we would

propose that domain names be used instead of domain numbers). Later sections

of this paper support its use as a yardstick of selective power of algebra-

oriented data sublanguages. For each such language, one would investigate

,whether there is any operation of the relational algebra which cannot be

defined in the candidate language.

An information algebra with a rather different orientation was

proposed by R. Bosak. t-51

In Section 3, we define an applied predicate calculus--the relational

calculus-- and introduce a number of concepts related to meaningful and ----

reasonable queries. These concepts are somewhat related to those of J. L.

Kuhns. [6,7,81 However, his relational data file is less structured than

this author's relational model.

A data sublanguage (called ALPHA), founded directly on the relational

calculus, has been informally described in [4]. This calculus can also be

used as a means of comparing calculus-oriented data sublanguages with one

another.

In Section 4, we provide an algorithm for translating an arbitrary

alpha expression into a semantically equivalent sequence of operations in

the relational algebra. This algorithm demonstrates that the relational

algebra has at least the selective power of the relational calculus. As a

consequence, we may shortcut the work of comparing any given algebra-oriented

data sublanguage LA with any given calculus-oriented language LC by

comparing L A with the relational algebra and LC with the relational

calculus, as indicated in Fig. 1. In this figure, the Project MAC system

called MACAIMS is cited as an example of an algebra-oriented language

bee Dl>.

In section 5, we consider the pros and cons of data sublanguages

founded on a relational algebra versus those founded on a relational calculus.

CALCULUS-ORIENTED LANGUAGES

Fig. 1: COMPARISON %-lEME FOR DATA %J?al ANGUAm

4

2. A RELATIONAL ALGEBRA

2.1 Objective

The primary purpose of this algebra is to provide a collection of

operations on relations of all degrees (not necessarily binary) suitable

for selecting data from a relational data base. The relations to be

operated upon are assumed to be normalized; that is, the domains on which

they are defined are simple (see [2,3] and below). In Section 4, we shall

discuss the selective power of this collection of operations.

&Data selection is viewed as the formation (by some operation of the

algebra) of a new normalized relation from the existing collection of

relations. Presentation operations such as ordering a relation by values

in one or more of its domains and factoring a normalized relation into un-

normalized form are discussed elsewhere (see [4] and Appendix). These latter

operations have no effect on the information content of retrieved data.

For notational and expository convenience, we deal with domain-ordered

relations; that is, the individual domains of a given relation can be

identified as the first, second, third, and so on. As pointed out in [l],

however, in many practical data bases the relations are of such high degree

that names rather than position numbers would be used to identify domains

when actually storing or retrieving information.

2.2 Introductory Definitions

Our aim in this section is to define the kinds of domains (simple and

compound) and the kinds of relations (normalized) which are operands for

the operations to be subsequently defined.

5

The Cartesian product of two sets C, D is denoted C x D, and is

defined by:

C x D = {(c,d): c E C A d E D}.

The expanded Cartesian product x of n sets D,, D2, Dn is

defined by:

x(D,,D2,...,D,) = C(dl,d2,...,dn): dj E Dj for j = 1, 2, . . . , nl.

The elements of such a set are called n-tuples, or just tuples for short. When

n = 1, ~$1 = D, since no distinction is made between a l-tuple and its only

component.

Suppose d = (d,, d2, dm) and e = (e,, e2, en). The

concatenation of d with e is the (m + n)-tuple defined by

dne= (d,,d2 ,..., dm,e,,e2 ,..., enI.

R is a relation on the sets D,, D2, a.., Dn if it is a subset of

x(+ D2, D,,). A relation is accordingly a special kind of set. Its

members are all n-tuples where n is a constant called the degree of the

relation. Relations of degree 1 are called unary, degree 2 binary, degree 3

ternary, degree n n-ary. The sets on which a relation is defined are called

its underlying domains. For data base purposes, we are concerned with data

consisting of integers and character strings (other types of primitive elements

may be included in this definition if desired, with only minor changes in some

of the definitions below).

A simple domain is a set all of whose elements are integers, or a set

all of whose elements are character strings. A relation defined on simple

domains alone is said to be simple normal. In the remainder of this paper,

whenever the term relation is used without further qualification, it means

simple normal relation.

A compound domain is the expanded Cartesian product of a finite number

(say k, k 2 1) of simple domains; k is called the degree of the compound

domain.

Two simple domains are union-compatible if both are domains of integers

or both are domains of character strings. Two compound domains D, E are

union-compatible if they are of the same degree (say m) and for every j

(j=l,Z,...,m) the

the jth simple domain

the compound domains of

.th
J simple domain of D is union-compatible with

of E. Two relations R, S are union-compatible if

which R and S are subsets are union-compatible.

2.3 Definitions of the Operations

The operations to be defined fall naturally into two classes: the

traditional set operations (Cartesian product, union, intersection, difference)

and less traditional operations on relations (projection, join, division,

restriction). We consider the traditional set operations first.

2.3.1 Traditional Set Operations - The usual Cartesian product R x S of

relation R (degree m) with relation S (degree n) is a relation of

degree 2, using the definition given in Section 2.2 above. The Cartesian

product employed in the relational algebra, however, yields an expanded product, ,

a relation R @ S, whose degree is m + n. This product is defined by

R a S = {(rns): r E R A s E Sl.

Union (u), intersection (n), difference (-) are defined in the

usual way, except that they are applicable only to pairs of union-compatible

normal relations.

2.3.2 Projection - Suppose r is a tuple of the m-ary relation R. For

j = 1, 2,
.th

m the notation r[j] designates the J component of r.

For other values of j, r[j] is undefined. We extend the notation to a list

A = (j,, j,, . . . , jk) of integers (not necessarily distinct) from the set

(1, 2, m) as follows

rl31 = bCj,l, r&l, . . . , r[jk]).

When the list A is empty, r[A] = r. Let R be a relation of degree m, and

A a list of integers (not necessarily distinct) from the set (1, 2, m}.

Then, the projection of R on A is defined by

RCA] = {r[A]: r E R}.

Note that when A is a permutation of the list (1, 2, . . . , m-1, R[Al

is a relation whose domains are the same as those of R except for a change

in order of appearance.

In Fig. 2, we exhibit some examples of projection. Later we shall make

use of the fact that projection provides an algebraic counterpart to the

existential quantifier.

.

RI1 I@, >

R(D, D2 D3)
.

a 2 f

b 1 9

C 3 f

d 3 g

e 2 f

R[zl(D, > R[31 (D, >

f

9

R[Wl(D, D2) R[3;2,21@, D2 O3)

f 2 f 2 2

9 1 9 1 1

f 3 f 3 3

9 3 9 3 3

Figure 2

A ternary relation R and five of its many projections.

9

2.3.3 Join - Let 8 denote any of the relations =, f, <, 5, >, and 2. The

o-join of relation R on domain A with relation S on domain B is

defined by

R[A 8 B]S = {(r?): r c R A s E S A (r[A] 0 s[bl)L

providing every element of RCA] is e-comparable with every element of S[B].

Note that x is B-comparable with y if xey is either true or false (not

undefined).

In Fig. 3, we exhibit some examples of joins.

R(A B C) E) S(D

a 11 2 u

a 2 1 3 v

b 12 4 u

c 2 5

c 3 3

R[C = C]S(A B C D E) R[B = D]S(A B C D E)

bl 2 2 u a 212 u

c 3 3 3 v c 2 5 2 u

c 3 3 3 v

R[C > D]S(A B C D E)

c 3 3 2 u

c 2 5 2 u

c 2 5 3 v

c 2 5 4 u

Figure 3

Relations R,S and three joins

10

Note that

R[C < D]S u R[C = D]S u R[C > D]S = R QD S.

The most commonly

equi-join. In the case

relation are identical

by projection, the resu

in [2].

needed join is the join on =, which we call the

of the equi-join, two of the domains of the resulting

in content. If one of the redundant domains is removed

It is the natural join of the given relations as defined

2.3.4 Division - Suppose T is a binary relation. The image set of x

under T is defined by

gT(‘) = {y: b,y> E J-1.

Consider the question of dividing a relation R of degree m by a relation

S of degree n. Let A be a domain-identifying list (without repetitions)

for R, and let ?i denote the domain-identifying list that is complementary

to A and in ascending order. For example, if the degree m of R were 5

and A = (2,5), then A = (1,3,4). We treat the dividend R as if it were a

binary relation with the (possibly compound) domains K, A in that order.

Accordingl.y, given any tuple r E R, we can speak of the,image set g,(r[K]),

and we note that this is a subset of RCA].

Providing R[A] and S[B] are union-compatible, the division of R on .

A by S on B is defined by

R[A t B]S = Ir[m: r E R A S[B] c_ g,(r[K])}.

11

Note that, when R is empty, R divided by S is empty, even if S is

also empty.

In Fig. 4, we exhibit two examples of division. These examples show

that projection on the dividend preceding division can have a different effect

from division followed by projection on the quotient.

R(A P C) S(D 0

1 11 x X 1

2 '11 y X 2

3 11 z Y 1

4 12 x

R[B,C][C t D]S = (111.

Figure 4

Division of R by S

Later we shall see that division provides an algebraic counterpart to

the universal quantifier. Actually, division is definable in terms of the

operations already introduced:
t

R[C + D]S = R[a -((R[a @ S[D])- R)[a.

2.3.5 Restriction - Suppose R is a relation and A, B are domain-identifying

lists for R. Let 8 denote any of the relations =, f, <, s, >, and 2.

The e-restriction of R on domains A, B is defined by

R[A 8 B] = {r: r E R A (r[A] 8 r[B])>,

t This observation klas made by Paul Healey of IBY Research, San Jose.

12

providing every element of R[A] is &comparable with every element of R[B].
.

In Fig. 5, we exhibit two examples of restriction.

RjA B C)

P 2 1

9 2 3

q 5 4

r 3 3

R[B = C](A B C)

r 3 3

R[B > C](A B C)

P 2 1

9 5 4

Figure 5

A relation R and two of its restrictions.

This operation is introduced because of its direct use in Section 4.

It is definable in terms of the B-join already introduced. Thus,

R[A 0 B] = (R& =A??](R[A][A 8 B]R[B]))[L],

where L is a list identifying all the domains of R in ascending order,

and A% denotes the concatenation of list A with list B. The e-join of R

with S is likewise definable in terms of Cartesian product and e-restriction:

R[A 8 B]S = (R 8 S)[A 8 B].

13

2.4 Sample Queries

Suppose a data base includes the following two relations:

Symbol Relation Name

S suppliers

Domain 1

supplier f

Domain 2 Domain 3

supplier name location

T SUPPlY supplier # part #

Table 1 below lists nine queries, along with appropriate algebraic

expressions E for them.

n Find the supplier numbers of the suppliers each of whom supplies:

j

1.

2.

3.

4.

5.

6.

7.

8.

9.

Item j

Something

Nothing

Part 15

Something, but not part 15

riot part 15

A part other than 15

Part 15 only

At least parts 12, 13, 15

All parts supplied

Ej 1
T[ll

SC1 1 - T[ll

(T[2=1]{15}

T[ll -0

SD1 -0

(T[Z=l](T[Z] - 115 ~>>>rN

043
T[Z+l]{lZ, 13, 15)

T[W]T

Table 1

Examples of Algebraic Expressions

14

n Find the locations of those suppliers each of whom supplies item j in

the table above

(S[l = lIEj)['I.

These examples demonstrate that reasonably complicated queries can be concisely

expressed in terms of the relational algebra.

15

3. RELATIONAL CALCULUS

Having defined a relational algebra, we now consider an applied predicate

calculus which may also be used in the formulation of queries on any data base

consisting of a finite collection of relations in simple normal form.

3.1 Alphabets, Terms, and Formulae

The alphabets for this calculus are listed in Table 2 below:

Individual Constants

Index Constants

Tuple Variables

Predicate Constants

monadic

d,yadic

Logical Symbols

Delimiters

a,, a2, a3¶ ..+

1, 2, 3, 4, . . .

r,, r2, r3, . . .

P,' P*, P3' **a

=, <, >, I, 2, #

3, v, A, "91

Cl 0 9

Table 2

The Alphabets of the Relational Calculus

Under the intended interpretation, a one-to-one correspondence is

established between the monadic predicates (as many as are needed) and the

relations in the given data base. Suppose the relations are R,, R2, RN'

Then, Pj indicates membership of tuples in relation Rj (j = 1, 2, N).

A monadic predicate followed by a tuple variable is called a range term. The

range term Pjr is interpreted as stating that tuple variable r has relation

R.
J

as its range.

16

An indexed tuple has the form r[N] where r is a tuple variable and

N is an index constant. Its purpose is to identify the Nth component of a

tuple r.

Let 6 be one of the predicate symbols =, f, <, 5, >, and 2. Let X,n

be indexed tuples and cx an individual constant. Then, A@J and XBa are

called join terms. The terms of the relational calculus are of only two types:

range terms and join terms.

The well-formed formulae (abbreviated WFF) of the relational calculus

are defined recursively as follows:

1. Any term is a WFF;

2. If r is a WFF, so is 1I';

3. If I-1, r2 are WFFs, so are (T, v r2) and (r, A r2);

4. If r is a WFF in which r occurs as a free variable, then

3r(r) and Wr(r) are WFFs;

5. No other formulae are WFFs.

The usual conventions are adopted for saving parentheses and avoiding

duplicate use of bound variables. Table 3 gives examples of WFFs of the

relational calculus.

17

WFFs with no range terms

r,Dl > al

3r, (r, C31 > al 1

3q (r, i31 = r&W

Vr,3r2((r, IiS1 = r$l) A (r&l1 = a$)

(r,C31 = r,CW A 3r3h$11 = al >

WFFs with range terms only

‘gr3

‘gr3 A P7r2

‘f3 ” ‘sr3

P5r3 A lP6r3

Range-Separable WFFs

P8r, * (r, [31 = al >

P7r2 * C-y-, (r, C31 = r2K-4

WFFs not Range-Separable

b-g, v (r, C31 = al 1

P7r2 A 3r,Ur, [31 = r21N) v Qf,)

lP8r, * (r,C31 = al 1

Free Variables

rl

none

r2

none

'v2

rl

r2

rl

r2

rl

Table 3

Examples of WFFs of the Relational Calculus

18

3.2 Range Separability

With each tuple variable in a WFF, we need to associate a clearly defined '

range. The following definitions are aimed at this goal.

A range WFF is a quantifier-free WFF, all of whose terms are range terms.

A range WFF over r A -- - is a range WFF whose only free variable is r. proper

range WFF over r is a range WFF over r satisfying two constraints: the

syntactic constraint that either 1 does not occur at all or that it immediately

follows A; and the semantic constraint that, whenever r occurs in two or

more range terms, the range predicates in those terms must be associated with

relations which are union-compatible. The syntactic constraint prohibits

specifying the range of a tuple variable r by merely stating that relation R

(say) is not the range of r. The two constraints together prohibit tuple

variables from having ranges which are other than the given relations or rela-

tions which can be generated from them by applying union, intersection, and

difference to union-compatible pairs of relations.

Both bound and free variables must have clearly defined ranges. Suppose

A is a WFF having r as a free variable, but containing no range term in r.

Let r be a proper range WFF over r. To introduce r into Ir(A) or Vr(A),

we replace 3r by 3rr, and Vr by Wrr. These are called range-coupled

quantifiers and are defined by the equations:

W(A) = 3r(r A a)

VI’(A) = Wr(lr v A).

Now, we can define a class of WFFs having clearly defined ranges for all

its variables. A WFF is range-separable if it is a conjunction of the form

19

u, A u* A . . . A un A v,

where

1) nzl;

2) u, through Un are proper range WFFs over n distinct tuple

variables;

3) V is either null (in which case the formula is simply

u, * u2" . . . A un), or it is a WFF with the three properties:

a) every quantifier in V is range-coupled;

b) every free variable in V belongs to the set whose

ranges are specified by U,, U2, . . . , un;

c) V is devoid of range terms.

One consequence of these requirements if that a range-separable wFF

has at least one free variable.

3.3 Alpha Expressions

If the range-separable WFFs of the relational calculus were used as

relation-defining expressions without further augmentation, they would lack

the much-needed capability of defining projections of relations. Accordingly,

we consider simple alpha expressions of the form

(t,, t2’ ***, $1 : w

where

1) w is a range-separable WFF of the relational calculus;

2) t,, tp . . . , tk are distinct terms, each consisting of a tuple

variable or an indexed tuple variable;

20

3) the set of tuple variables occurring in t,, t2, tk is

precisely the set of free variables in w.

Set brackets { 1 are omitted because they are syntactically superfluous.

The list (t,, t2, tk) is called the target list and w the qualification

expression.

Suppose pl y p2, . . . , on
are the distinct tuple variables in order of

z = (t,, t2’ ***, t,) : w.

their first occurrence in the target list of a simple alpha expression z:

Suppose that relations S,, S2, Sn (not necessarily distinct) are the

ranges of q, p2, . . . , 'rt' respectively. Then, z denotes a certain pro-

jection of that subset of S, @ S2 @I . . . @ Sn whose elements satisfy the

qualification expression w. The projection in question is indicated in an

obvious way by the indices associated with the tuple variables.

Now follow examples of queries in the form of simple alpha expressions.

The data base of Section 2.4 is assumed. Predicates
pl' p2 are the range

predicates for relations S (suppliers) and T (supply), respectively.

8 Find the supplier number of those suppliers who supply part 15.

r2D 1 : P,r2 A (r,[2] = 15).
,_

8 Find the supplier numbers of those suppliers who supply something

other than part 15.

r2D 1 : P2r2 h (r2[2] # 15).

21

8 Find the supplier names and locations of those suppliers who supply

part 15.

(r,[Z], r,[3]): P,r, A JP2r2(r2[2] = 15 A r,[lJ = r,[l]).

n Find the locations of suppliers and the parts being supplied b.v them

(omitting those suppliers who are supplying no parts at this time).

(r,[3], r,[Z]): P,r, A P2r2 A (r,[l] = r2[1]).

The concept of simple alpha expression can be generalized without losing

its desirable range properties. An alpha expression is recursively defined as

follows:

1) Every simple alpha expression is an alpha expression;

2) If t: w, and t: w2 are alpha expressions, so are

t: (w, v w2)

t: (w, A lw2)

t: (w, A w,);

3) No other expressions are alpha expressions.

While it is doubtful that many queries will attain the complexity of alpha

expressions of the non-simple kind, it would be artificial to exclude them

from the theory.

3.4 Relational Completeness

Now we can introduce a basic notion of selective power. An algebra or

calculus is relationally complete if, given any finite collection of relations

22

R,, R2, RN in simple normal form, the expressions of the algebra or

calculus permit definition of any relation definable from R,, R2, RN

by alpha expressions (using a set of N range predicates in one-to-one

correspondence with R,, R2, . . . , RN). We shall apply this notion in Section 4

to the algebra of Section 2.

23

4. REDUCTION

The objective of this section is to show that the relational algebra

defined in Section 2 is relationally complete. We proceed by exhibiting an

algorithm for translating any simple alpha expression z into a semantically

equivalent algebraic expression T. We then extend this algorithm to deal

with any alpha expression whatsoever.

The semantic equivalence is based partly on the intended interpretation

(described in Section 3) of the alpha expression, and partly on an arbitrarily

specified one-to-one correspondence P. - R
J

j (j=1,2,..., N) between range

predicates and the N simple normal relations of whatever relational

data base is given.

The reduction algorithm for simple alpha expressions may be best

understood by supposing for the moment that, instead of merely producing

several algebraic expressions (which are finally combined into one composite

expression T), these expressions are evaluated as they are produced. The

effect of this evaluation would be roughly as follows. First, the ranges

of the cited tuple variables are generated by retrieving certain data base

relations and by taking unions, intersections, and set differences as nec-

essary. Second, a Cartesian product of these ranges is formed. From this

product the final relation is eventually extracted. Third, tuples that do

not satisfy the combination of join terms are removed from the product.

Fourth, the remaining product is whittled down by projection and division to

satisfy the quantification in the alpha expression. Finally, a projection

as specified by the target list is performed, and we have the required

relation. A more formal account now follows.

24

4.1 Reduction of Simple Alpha Expressions

Let the given alpha expression be

z = t : w,

where 1) t = (t,, t2, tk) is the target list;

2) w=u, AU2 A...A up A V is the qualification (a range-

separable WFF);

3) there are q 10 bound variables in V;

4) all p of the variables free in w occur in t (thus, k 2 p).

1 Step

For convenience, we apply four transformations to z yielding a new

alpha expression with the same denotation:

1) convert V to prenex normal form (if it is not already in this

form) without expanding the range-coupled quantifiers (in the

normalization the range-coupled quantifiers behave just like

ordinary quantifiers);

2) keeping the leading quantifiers unchanged, convert the remaining

subformula (the so-called matrix) to disjunctive normal form;

3) wherever a join term using relation 0 is immediately preceded

by 1, eliminate the symbol 1 and replace 8 by its complement

(the complements of =, f, <, I, >, and 2 are f, =, 2, >, s, and <,

respectively);

4) systematically apply an alphabetic change to the variables in the

alpha expression resulting from 3) so that the variables become

25

r,, r2, rp+q in the order of their first occurrence in

the qualification (note that the first occurrence of a bound

variable is with its quantifier).

Let the alpha expression resulting from these four transformations

be

Z' = t : Ui A IJh A *.*AU' A V's
P

The bound variables in V' are rj, where j=p+l, p+2, p+q. Let the

quantifier (3 or v) associated with rj in V' be Qj, and let the

proper range WFF over rj in V' be Us.

Step 2

For j=l, 2, . . . , p+q form a defining equation for the range Sj

(say) of tuple variable rj. The algebraic expression on the right-hand

side of this equation is obtained from Ui (the proper range WFF over rj)

by applying the following rewriting rules to UJ:

1) pirj + Ri

2) v-tu

3) Al -b -

4) A -+ n, providing 3) is inapplicable.

For example, if U; = P3rjhlP2rj, then the defining equation for

Sj is

Sj = R3 - R2.

26

In this case, R3 and R2 must be union-compatible (by definition of

proper range WFF).

3 Step

Associated with each relation Ri (i=l,Z,...,N) in the given data

base is the union of Ri with all the data base relations that are union-

compatible with Ri. Call this union -?/(Ri). For any subset Sj of 4V(Ri),

define 9/(Sj) = gY(Ri). Form the defining equation

S= x1 8X2@... @xp+q,

where Xj = S. if r.
3 3

is free or existentially bound,

-@(Sj) otherwise.

The special treatment accorded the universal quantifier permits correct

handling of the case in which Sj = 4 and rj is universally quantified.*

The alternative of replacing the range-coupled universal quantifier in the

definition of alpha expressions by an extensional counterpart of the type

proposed by Kuhns in [S] was rejected because the extensional quantifiers do

not possess the complementary property analogous to:

for any WFF A. This condition is needed for the first transformation in

Step 1.

* Incidentally, a data base system should warn a user whenever it encounters
an empty range Sj or an empty universe %(Sj) in the interpretation of
a query, and inform him of the pertinent condition.

27

Let the degree of relation Xj be nj (j=1,2,...,p+q). Let

'-1 “c pj = i=, n i'

Then, the domain with position J in relation Xj has position J + uj

in the Cartesian product S.

4 Step

Remove the range-coupled quantifiers (if any) from V' to yield the

quantifier-free WFF V". If V" is null, form the defining equation

T
p+q =

S.

Otherwise, form a defining equation for Tp+q, the right-hand side of which

is an algebraic expression obtained from V" by applying the following

rewriting rules:

1) v-tu

2) A-+fl

3) (rj[JIOr,[KI) -f S[(J+uj)‘(K+~k)I

4) (rj[JIea) -+ S[(J+pj)elICa)

where a is an individual constant

8 is one of =, f, <, 5, 2, >.

Note that the symbol 1 does not occur at all in V" due to the

third transformation in Step 1.

28

Step 5

Form q defining equations for T j-1 (j=p+q, p+q-1, p+l) which

reflect the effect of the quantifiers of V' starting with the innermost

Q
p+q

and proceeding to the outermost Q p+l' The equation for Tj , is:

T
j-l = Tj[Cj]

Tj[Cj+, f Dj]Sj

where C
j = (l,‘,“‘, ~j)

D j = (l,Z,..., nj).

Step 6

Form a defining equation for

if Qj = 3

if Q.=V,
J

T which takes into account the pro-

jection specified in the original target list t:

T= Tp[C;C20...0Ck],

where, for h=l,Z,...,k

Ch =

(l+~j, ‘+11’, “ . , ~j+l) J if th = r.
3

(J+Pj > if th = rj[J]

and y.
J

is defined as in Step 3.

29

Step7 --

By means of simple substitution, form an equation which defines T

directly in terms of R,, R2, R,,, (and their respective degrees n,,

n2, n,,,) by eliminating X,, X2, X
p+q'

s,, 3’ *a', sp+q' S,T p+qP..'

T
P

from the equations generated above. We can assume that equations for

+/(Ri) (i=l,Z,...,N) are given, since they represent a property of the given

data base rather than of the queries.

4.2 Reduction of an Arbitrary Alpha Expression

The qualification w of an alpha expression z is either a range-

separable WFF (this is the case treated in Section 4.1) or a logical combination

of m>l such formulae (say w,, w2, . . . , wm) over a common set of free

variables using the connectives v, A, and AT. Let t be the target list.

To convert z to algebraic form, we use the reduction of Section 4.1 to

generate algebraic defining equations Zi for each zi where

Z.
1

= t : wi (i=l,Z ,...,m).

We then form a defining equation for z, the right-hand side of which

is obtained from the given logical expression for w in terms of w i bY

applying the rewriting rules:

1) v+u

3) A-+rl

4, Wi~‘i

if 2) is inapplicable

(i=l,Z ,...,m).

30

Simple substitution of the expressions for Zi in this equation

yields a defining equation for z.

4.3 Example of a Reduction

Suppose the data base relations include the following:

Relation Degree Range Domain Domain Domain
Symbol Name n Predicate 1 2 3

Rl suppliers 3 pl supplier # name location

R2 projects 2 p2 project # name

R3 supply 3 p3 supplier # part # project #

Further suppose 'I/(Ri) = Ri (i=1,2,3). Consider the query:

n Find the name and location of all suppliers, each of whom

supplies all projects.

An alpha expression which represents this query is:

(r,C23, +I): P,r, * vP2r23P3r3
(
(r, El 1 = r3[1 I) * b3[31 = r,Cll) .

1

Applying the reduction procedure of Section 4.1, we obtain the

following defining equations:

Si = Ri

s = s, @ s2 0 s3

T3 = S[l=6] n S[8=4]

(i=l,2,3)

31

T2 = T3Cl,2,3,4,51

T1
= T2[(1,2,3,4,5) -:- (1,2)]52

T = T,[2,3].

4.4 Validity of the Reduction Algorithm

The reduction algorithm is based on two simple lemmas. Proof of these

is left to the reader.

Lemma 1

Let c1 be one of the three logical connectives v, A, r;l and o the
a

corresponding set operator U, n, -. Let r,a be WFFs in the relational

calculus, each having r as the only free variable. Then,

{r : I-&} = {r : I-1 aa {r : A) -

Lemma 2

Let R,S be relations of degree m,n, respectively. Let r be a

WFF of the relational calculus with free variables r, s. Let T be defined

by

T = {(rOs) : rER~scS~r1.

Then

a) T[u~] = {r: r E R A 3s(s E S A I')).

b) T[wmm+n o + uJS ={r: r E R A VS(S k S v r>>,

where for any jx&=G+a integers*~>P~D.

32

5. CALCULUS VERSUS ALGEBRA

A query language (or other data sublanguage) which is claimed to be

general purpose should be at least relationally complete in the sense defined

in this paper. Both the algebra and calculus described herein provide a

foundation for designing relationally complete query languages without re-

sorting to programming loops or any other form of branched execution --

an important consideration when interrogating a data base from a terminal.

One advantage that might be claimed for the algebraic approach is its

freedom from quantifiers. However, the calculus appears to be superior to

the algebra in four respects.

Ease of Augmentation - As pointed out earlier, relational complete-

ness represents a very basic selective power, which in most

practical environments would need to be enhanced. The most natural

type of enhancement is the introduction of a capability of invoking

any of a finite set of library functions while staying within the

algebraic or calculus framework (whichever is selected). Inspection

of alpha expressions reveals three distinct locations within such

expressions for potential invocation of library functions. The

first of these locations is within the target list to provide some

transformation of the retrieved relation. The second is the re-

placement of a join term by a truth-valued function of one or more

tuple variables (possibly indexed). The third is the replacement

of an indexed tuple variable within a join term by a function

(yielding an integer or character string, for example). Such en- t

hancements readily fit into the calculus framework. In the algebraic

33

framework, however, all such functions have to be re-cast in the

form of mappings from relations to relations. This gives rise

to circumlocutions.

2) Scope for Search Optimization - The relational calculus permits a

user to request the data he desires by its properties. This is

an ideal starting point for search optimization. The algebra, on

the other hand, requires the user to formulate a sequence of

algebraic operations that will generate the desired data from the

data base relations. For queries other than very simple ones, the

properties of the desired data tend to get hidden in the particular

operation sequence (one of many possible ones) which the user

selects.

Therefore, starting from an algebraic source language, one has the

choice of locally optimizing the execution of each operation (a

very limited form of optimization) or tackling the difficult problem

of analyzing sequences of such operations to discover the intended

defining properties of the desired data.

3) Authorization Capability - Highly discriminating authorization must

be based on the defining properties of the data requested by the

user rather than on a particular algorithm specified by the user

for retrieving that data. The arguments in 2) thus apply with equal

force to the system's authorization capability.

34

4) Closeness to Natural Language - Clearly, the majority of users

should not have to learn either the relational calculus or algebra

in order to interact with data bases. However, requesting data by

its properties is far more natural than devising a particular al-

gorithm or sequence of operations for its retrieval. Thus, a

calculus-oriented language provides a good target language for a

more user-oriented source language.

6.0 ACKNOWLEDGMENT

The author is indebted to Frank Palermo of IBM Research, San Jose, for

many valuable comments and criticisms. In particular, he discovered an error

in the treatment of empty ranges in Section 4.1, and suggested the introduction

of the universes -?/(Sj). In addition, Dr. Palermo has programmed the relational

algebra described in this paper, and subjected the reduction algorithm to a

number of tests on a computer.

35

REFERENCES

1. Codd, E. F., "A Relational Model of Data for Large Shared Data Banks",

2.

3.

4.

5.

6.

7.

8.

9.

Comm. ACM 13, June 1970, 377-387. -

Codd, E. F., "Further Normalization of the Data Base Relational Model",

Courant Computer Science Symposia 6, "Data Base Systems", New York City,

May 24-25, 1971, Prentice-Hall.

Codd, E. F., "Normalized Data Base Structure: A Brief Tutorial", Proc.

1971 ACM-SIGFIDET Workshop on Data Description, Access and Control, San

Diego, available from ACM, New York.

Codd, E. F., "A Data Base Sublanguage Founded on the Relational Calculus",

Proc. 1971 ACM-SIGFIDET Workshop on Data Description, Access, and Control,

San Diego, available from ACM, New York.

CODASYL Development Committee, "An Information Algebra", Comm. ACM 5,

April 1962, 190-204.

Kuhns, J. L., "Logical Aspects of Question Answering by Computer", Proc.

Third International Symposium on Computer and Information Sciences, Miami

Beach, Florida, Dec. 1969, Academic Press.

Kuhns, J.L., "Interrogating a Relational Data File: Remarks on the

Admissibility of Input Queries", Rand Corporation R-511-PR, November 1970.

Kuhns, J.L., "Quantification in Query Systems", Proc. Symposium on

Information Storage and Retrieval, April 1-2, 1971, available from ACM,

New York.

Strnad, A. L., "The Relational Approach to the Management of Data Bases",

Proc. IFIP Congress, Ljubljana 1971, North-Holland.

36

APPENDIX

For presentation purposes, it may be desirable to convert a normalized

relation to unnormalized form. The operation of factoring accomplishes this.

Let R be a relation, and A a domain-identifying list for R. The

A-factoring of R is defined by

X(R,A) = i(x, gRtX)) : x E R[AIl

where gR
is as defined in Section 2.3.4. Repeated application of this

operation with successively smaller lists A can convert R to a multi-level

hierarchical relation.

	Title
	Abstract
	1. Introduction
	2. A Relational Algebra
	3. Relational Calculus
	4. Reduction
	5. Calculus Versus Algebar
	6. Acknowledgment
	References
	Appendix

