nsrd.info micromanual

NetWorker Power User’s Guide to nsradmin

Prepared by: Preston de Guise
preston@nsrd.info

Date: January 2010
Version: 1.0

http://nsrd.info/micromanuals © Preston de Guise

1 Introduction

1.1 What is a micromanual?

To understand what a micromanual is, we first need to revisit what a standard IT or computer book looks
like. Typically it will run into the size of several hundred pages, most of which the average power user will
rarely use.

On the other hand, a micromanual is instead a short, concise guide aimed at providing a comprehensive
overview of, and instructions for a specific topic in as small a space as possible. The three principles of a
micromanual are:

* Your time as the reader is precious
* Youdon't want to read stuff targeted at beginners
* You'd prefer to spend less money and get just what you need

1.2 What is this micromanual?
This micromanual is NetWorker Power User’s Guide to nsradmin, and will document the following topics:

1. An overview of the functionality of nsradmin.
2. Operational basics:

Setting up regular backup components - clients, policies, groups, schedules and pools.
Checking device states.
3. Advanced nsradmin:

a. Mass updates.

b. Scripting.

c¢. Regular Expressions.

d. Offline mode.

a. Offline versus online configuration database access.
b. Syntax.

c. Starting and stopping backups.

d. Append vs Update.

e.

f.

1.3 Expected Audience

It is expected that the reader of this manual:

* Has a strong familiarity with standard NetWorker configuration components such as groups,
clients, policies, schedules, pools, etc., and is able to configure these components within
NetWorker Management Console. (No step-by-step instructions are given for creating resource
components in NMC - if these are required, this micromanual is not targeted at the reader.)

* Has at least a passing level of experience with either operating system scripting languages or
cross-platform scripting languages such as Perl.

* Has a spare host (physical or virtual) that NetWorker can be installed on in evaluation mode for
practice sessions. This can be any operating system or class of machine capable of running
NetWorker (a server class system is not required).

It is assumed that while the readers will have good NetWorker experience, they will have little exposure
to nsradmin.

© Preston de Guise Page 2

http://nsrd.info/micromanuals © Preston de Guise

Table of Contents

A 13 T Lot o oY o 2
1.1 What iS @ MICIOMANUAL? ...t s s s s s s s ss s 2
1.2 What is this MiCIrOMaANUAL? ...t s bbb sss s 2
1.3 EXPECLEA AUIEIICE .ottt bbb bbb bbb e e 2
2 WAININEG ceieuiiiiniiieniiieneiienisiaiorsessrsestrsssirssstsssstsnsssesssrasssrsssssssssssssssssssssssssnsssansssansssanssses 7
3 Document CONVENTIONScceeuuiiieeiiiiiiiiiiiiiiiiriiiiriie e rreessresaesrraassssesassssssnssssesnaes 8
4 Getting Started.......cccceiiiiiiiiiiniiiiiiiiiiiieniiiiiniiiiesisieseesiessssiesesestessssssessssssansssssansssssans 9
4.1 ReESOUICE DAtADaSE.. .. ieercereercet et sses s s ss s s R m s 9
4.2 OffliNe VEISUS ONIINE...cuiiiiereeriiseseeseiseseisessesesse s ssssssse s st s bbb s s s s s sases s ssasesssssanes 10
4.3 Care AN RESPECE ..ouereereeceereesrereree e ess e s s s R 10
5 How to do the eXamples....cccciiiiuiiiiiniiiiiiiiniiniiiniiiinississsen 11
6 Operational BasiCS......ccceieiienniiiinniiiieniiiieniinieneiniesssisiessisiesssssiesssssssssssssssssssssnssssssans 12
6.1 About NetWorker COMMEANAS......vureeereerseesensseessesssesssesssssssesssssesssessssssessssessesssssssesssssssssssessesssesssssssesssens 12
6.2 RUNNING NSTAAIMIN c1ueeectrieteeereesrersresesssesese s sess s sssees e s s s ss s s n s sennens 12
6.3 SYNTAX OVEIVIEW ..ttt s s bbb b s 13
6.4 Starting and StOPPING BaCKUPS ..ot sessssss s sssesssssssssssssessssssessaees 18
X T4 To L o =T s P 18
6.4.2 MONIEOTING sirrirririrsirsscrsirsssssinsscsssisissssssassisssisasssasssassesssesssssasssassesssssssssassssssssssesssssssssssssssesssssanssassssssessssssnsses 18
6.4.3 SEATTING A BACKUD coovvoreteevserretritrs sttt eriseerissasis s esssesissssissssssssessssesasssssssssssssssssssssnsssansssassssssssssnsesanss 18
6.4.4 Stopping @ RUNNING BACKUP c...couevereveerreerireerisseriseerssesissesisssssssesssesassessssssssssssssssssnsesansssassssssssssnsesanss 20
6.4.5 ChecKing the STALUS Of A GTOUP c.cceureeeerreerseerisseriseerssesissesissssssssessssessssessssssssssssssssssssessnsssassssssssssnsesanss 22
6.4.6 CloNiNg ANA MONITOTING wcourereeerireerirsrernserisserissesissssssssesssesissssssssssssessssessssssssssssssssssssssssesssssssssssssssnsesanss 23
6.5 APPENA VS UPAALE oot rseesesees s s sessse s sss s s s s ssssss s ssss st sesssssssesssens 24
6.6 Setting up Regular BackUp COMPONENLES c..cuuereeeermiesrermrersrersersesseesseessessssessesssssssesssesssssssessssssessssssesssees 26
6.6.1 Browse and REtENLION POLICIEScouweeverreerreerisserisecrssesssesissssssssesssessssessssssssssssssssssnsessnsssasssssssssssesanss 26
6.6.2 SCROAUICS.c.cucceotrerrsreretisirssrss st stsssssss s sas s s sssss s s s s s b s AR AR AR50 28
6.6.3 GIOUPS coovvorcurirsisisssinsissscssisisssssssssisssssasssasssassisssssasssasssasesssesssssssssassesssssssssasssassssssssasssnssssssassesasssanssssssssssasssassses 31
LI X 01 | 1-3 1 L O O OO 33
6.6.5 POOIS .ottt sts sttt s s s AR RSB R AR 35
6.6.6 REVISIEING OUE GTOUDS c.vreiversirsirsirissssseossinssisisssisssassesssisssssassssssesssssssssassssssesssssssssasssssssssessssssnssassssssesssssasses 37
6.7 MONItOrING DEVICES ...ttt s s s s 38
6.8 Deleting RESOUICTES ...couereereeereeererreserssese s s s ssssssse s s s s ss s s s sennsens 40
6.9 ClOSING COIMIMEITS. ... cuucreerseeseesersseessersseessesseessessesssesssesssesssesss s s s s ss s s s s p e sennaes 43
A e AV T Vol I8 4 T = o [411 o TN 44
7% S § 4 Ut oo 6 11 U 0 (o) o 00 OO OO PO OO PPUROTPRON 44
7.2 BUIK ACHIVITIES covetrereecereeseiset sttt s bbbt s s s s s s bbb b 44
7.3 Scripting With NSTAAMUN ... es e s s sennans 47
7.3. 1 INEENACA GO .oeueeseerevererirsrrss sttt ssssssisssassess s s sassessss s s s s s s s s s s sssssssasssansss 47
7.3.2 INETOAUCLOTY SCTIDEING ccovevurerereerireerisesssserssesissesissssisssessssessssesasssssssssssssssssessssessssssasssssssssssssssnsssanssssssssssssessn 47
7.3.3 PrliMINGATY SOTUD ..ooveeerereeereeeriseerissesssssessssesissesissssassssssssessssesasssssssssssssssssessnsessssssasssssssssssssssssanssssssssssssessn 48
7.34 A ClIENE CrEALION SCTIPE couunererereeerieeerssersserinsesissssissssssssessssesasssssssssssssssssessssessssssassssssssssssssssssassssssssssssessn 50
7.4 Connecting to the ClIENT SEIVICES ..o sess s sessssssessaees 51
7.5 Using regular eXpressions in NSTAAMUIN ... eeseerereeersessesseesseessesssssssesssssssesssesssssssesssssesssssssessaees 54
7.6 OffliNE MOAE ..ottt s s bbb b 55
8 Appendix A —Test Setup Configurationcceeciiieiiiiinciininniiinieciiins 57
8.1 From NetWorker Management CONSOLE. ... sesssssssesssesssssssesesssessssssessaees 57

© Preston de Guise Page 3

http://nsrd.info/micromanuals © Preston de Guise

8.2 From Unix/Linux COMMAaNd LiNe.....coueeerereeserssesessessesseesesssesssssssessssssesssssssssssssessssssssssessaees 57
8.2.1 ReSoUrce CONfIGUIALION SCTUPceuererverurivermserireeriseesissesssssssssessssesasssssssssssssessssesssssssssssssssssssssssnsesssesssess 57
B.2.2 VOIUME SEUUP cooevorerererieerisertseersserissasissesisssessssesissesassssisss s s s sassssessssssssssassssasessassssassssssssssansesasessnsess 58

8.3 From Windows COmMMAaNd LiNe......ceeeerensresesssssesssssesssessssssesssssssessssssesssesssssssssssssessssssesssees 58
8.3.1 ReSoUIrce CONfIGUIALION SCTUPceurererveresireesserireeriseerissesssssssssessssesasssssssssssssessssessssessssssasssssssssssnsesssesssess 58
B.3.2 VOIUME SEUUP cooeverereerierieertseersserissasissesis s s esiss s s sasss s st sasss s sssssssasessassssassssssssssansesansessnsess 59

© Preston de Guise Page 4

http://nsrd.info/micromanuals © Preston de Guise

Table of Figures

Figure 1: NMC view of @ NetWOrker POliCY FESOUICEirieererieseeresssessesss 9
Figure 2: Using the append command with Windows Paths.......sssssssssssssssssssssssens 26
Figure 3: Daily schedule created in nsradmin, as viewed from NMC........cccnnn. 30
Figure 4: Monthly schedule created in nsradmin, as viewed from NMC.......cooummneesssssesns 31
Figure 5: Viewing a device resource in WindOWSsnsssens 39
Figure 6: Using the create-policy.bat SCript 0n WiNAOWS......coeeeierneeesssens 47
Figure 7: Output from the "create-client.bat"” script 0n WiNAOWS.......ooccneniernennienenesniesssssssssssssssssssssssssesens 51
Figure 8: Running nsradmin in offline MOdE ... ssssssssssssssssssens 56
Figure 9: Bootstrapping the NetWorker configuration required for the micromanual on Windows............. 59
Figure 10: Labelling media in the ADV_FILE devices 0n WiNAOWSc.couremneesissesssssssssessssssssssssssssssens 60

© Preston de Guise Page 5

http://nsrd.info/micromanuals © Preston de Guise

© Preston de Guise Page 6

http://nsrd.info/micromanuals © Preston de Guise

2 Warning

This micromanual describes steps that, if misused, could cause corruption to a NetWorker configuration
database. As such, they should only be run on a freshly installed NetWorker lab server, rather than an
active production server.

As is the case with all production systems, power-user commands have the capability to both significantly
help successful operations, or to significantly hinder successful operations if used incorrectly. Before
actively using any of the techniques described in this micromanual you should be completely familiar with
their usage from self-training in a lab environment. Furthermore, you should always have an up to date
bootstrap backup to recover should anything go wrong.

The author takes no responsibility for any damage to a system, or loss of functionality caused by running

either the commands within this micromanual, or commands adapted from this micromanual against a
NetWorker environment.

© Preston de Guise Page 7

http://nsrd.info/micromanuals © Preston de Guise

3 Document Conventions

Throughout the document, the following conventions will be used for formatting:

Boxed text in a standard weight text represents output of commands.

<Boxed, italicised text in angle brackets represent an in-session comment, not output
expected to be seen during the session.>

Boxed text in a bold weight text represents commands to be typed in.

Boxed text that is bold and italicised is part of a command to be typed in, but
you should substitute with local text (e.g., replacing a hostname).

Text in a dotted box represents scripts that should be saved to file, then executed at a
later step.

© Preston de Guise Page 8

http://nsrd.info/micromanuals © Preston de Guise

4 Getting Started

4.1 Resource Database

If you've worked with NetWorker from within the management console (or previously, from one of the
0S-specific GUIs), you're more than likely aware of how configuration components such as clients,
schedules, groups, policies, etc., look within the GUI. For example, here’s what a policy looks like:

eNO Properties
General |
Identity Configuration
Name: [Month | Number of periods: | 113
Comment:] | Period: Months ~|
@ (ot

Figure 1: NMC view of a NetWorker policy resource

The configuration details for such a policy are maintained as part of a plain text file on the NetWorker
server, stored within the ‘res’ directory. On a Unix/Linux system, this is typically in /nsr/res, and on a
Windows system the default install location is “C:\Program Files\Legato\nsr\res”.

Previously NetWorker only ever had 3 configuration files within the res directory:

* nsr.res - Most configuration options
* nsrjb.res - Jukebox, device and label template configuration options
* nsrlares - Security/Port configuration options

Unfortunately, with just 3 files yet many resources within each file, corruption was not uncommon, and so
in NetWorker 7.0, a new and much improved resource database structure was introduced. This saw the
content of nsr.res and nsrjb.res split up and configured as individual files, located under a new directory,
(‘nsrdb’) within the ‘res’ directory, and organised in a hashed structure. (Over time, nsrla.res was similarly
split up, but organised into a hashed directory structure underneath ‘nsrladb’ in the same parent
directory, ‘res’.)

For instance, looking at a Unix NetWorker server, you may find directories and files such as the following:

1ls /nsr/res/nsrdb
01/ @2/ @3/ 04/ @5/ 06/ @7/ @8/ @9/

1ls /nsr/res/nsrdb/01

0b005d7500000000d2255542000000000a0000001
15005d7500000000d2255549000000000a000001
1f00151400000000972e5d4a000000000a000001
1f00261700000000f4efcb4a000000000a000001
1f005d7500000000d2255549000000000a000001

Each one of those lengthy named files is a single NetWorker configuration resource - a policy, or a client,
or a schedule, etc.

For example, the NetWorker resource file for the ‘Month’ policy on a server in my lab looks like:

© Preston de Guise Page 9

http://nsrd.info/micromanuals © Preston de Guise

comment: ;

name: Month;

number of periods: 1;

period: Months;

type: NSR policy;

resource identifier: 62.0.93.117.0.0.0.0.210.37.85.73.0.0.0.0.10.0.0.1(1)

Now, the first thing to note is that you should not, unless directed to by your support provider, ever
directly manipulate the actual files within the resource databasel. While they may be plain text, they
should be treated like binary database files and edited with the appropriate tools instead.

In this case, the appropriate tool for editing the resource database is nsradmin.

4.2 Offline versus Online

NetWorker’s nsradmin utility supports two distinct modes of accessing a resource database. These
methods are:

* Online - Instead of interacting directly with the files, nsradmin interacts with the appropriate
NetWorker daemons on an actively running NetWorker server in order to retrieve, review and
update information.

e Offline - If the server is not currently running, nsradmin can instead be pointed at either a
configuration file or database, and interact directly with these files. Certain “dynamic” parts of the
configuration that depend on access to the media database, etc., are not presented in this mode.

When working with nsradmin, it's always very important to ensure that you choose the right method. A
simple rule is that if the NetWorker server is running, you should never, ever attempt to use nsradmin
directly against the files in the configuration database. Doing so could cause serious corruption to your
NetWorker environment requiring a bootstrap recovery to restore functionality.

We'll focus on online mode for this manual.

4.3 Care and Respect

A tool like nsradmin is, in the right hands, very powerful and instrumental in helping a NetWorker
administrator maximise the backup environment. However, misused, nsradmin can cause significant
problems to a configured environment - it could lead to situations where backups can no longer function,
or recoveries cannot be done, or even where the NetWorker server won'’t start.

You should always use nsradmin with a great deal of respect and care. (Let the user beware, so to speak.)

1 To further reinforce this point: it would be very, very rare of a support provider to advise you to directly edit any of
the resource files, either.

© Preston de Guise Page 10

http://nsrd.info/micromanuals © Preston de Guise

5

How to do the examples

Throughout the manual, there will regularly be examples of commands that you should run. For this
reason, you are required for the purposes of the training to install a temporary instance of NetWorker on
a spare host or virtual machine.

Our test/lab environment for this micromanual will therefore be one where you have:

1.

3.

Installed the NetWorker server/client/storage node software appropriate to your operating
system, downloaded from PowerLink or from your own local repository, on a workstation or
laptop.

Have not applied any license keys - this will allow the NetWorker server to run in evaluation
mode for 30 days, which is more than enough time to make your way through the manual.
Configured two disk backup units - devices of type “ADV_FILE”.

Do not use this environment for production backups.

Throughout this manual, we will assume that on your temporary NetWorker server you’'ve created the
following components prior to continuing to the next chapter:

1.
2.

&

A group called “Test”.
A client instance for the NetWorker server, with one or two handpicked directories as the save
sets. Optimally, you should be looking for a total backup size of between 1 and 3 GB, so that there
is enough occupied space to be able to observe backups, but not so much space that it takes a
lengthy time for examples to finish.
A backup pool called “Test” that has the “Test” group assigned to it.
A backup clone pool called “Test Clone”.
Two advanced file type disk backup units:

a. One labelled in the “Test” pool.

b. The other labelled in the “Test Clone” pool.

Refer to “Appendix A - Test Setup Configuration” (page 57) for instructions on establishing this
configuration.

© Preston de Guise Page 11

http://nsrd.info/micromanuals © Preston de Guise

6 Operational Basics

6.1 About NetWorker Commands

In order to maintain common commands across platforms, NetWorker uses the same command line
“switch” argument on both Unix/Linux platforms and Windows platforms - the “dash option” method. For
instance, on Unix/Linux to specify the name of a pool in the save command, you would use “-b poolName”,
and on Windows, you'd use exactly the same rather than say, “/b poolName”.

Unless otherwise noted, you should find that any examples given in this manual will work on both a
Windows system and a Unix/Linux system, regardless of any command prompt preceding the command.
(Where there are sufficient differences between platforms, both Unix/Linux and Windows examples will
be given.)

Most NetWorker commands do not technically support any usage request in the traditional way -instead,
they will print usage information in response to any unknown command line option. Therefore, when
wanting to see what options a NetWorker command will take, it’s usually safe to run the command with a
“-?” argument.

6.2 Running nsradmin

In order to run nsradmin on a host, you must at least have the NetWorker client software installed. On
Unix/Linux platforms, nsradmin will usually be installed into /usr/sbin, and on Windows platforms, the
default install location will be “C:\Program Files\Legato\nsr\bin” (it should however be in the execution
path).

To see the usage options for nsradmin, run:

[root@tara ~]# nsradmin -?

usage: nsradmin [-c] [-1 file] [-s server] [-p {prognum | progname} 7]
[-v version] [query]...

usage: nsradmin [-c] [-1i file] [-d resdir] [-t typefile] ... [query]...

usage: nsradmin [-c] [-i file] [-f resfile] [-t typefile] ... [query]...

When run with no arguments, nsradmin expects to connect to a NetWorker server running on the current
host, and enter interactive mode:

[root@tara ~]# nsradmin

NetWorker administration program.

Use the "help" command for help, "visual" for full-screen mode.
nsradmin>

If the current machine is just a client however, you’ll get an error sequence such as the following:

[root@fawn ~]# nsradmin
39078:nsradmin: RPC error: Program not registered

There does not appear to be a NetWorker server running on fawn.pmdg.lab.

(Note that the actual error output may vary depending on the version of NetWorker in use, and the
platform you are running the command from.)

© Preston de Guise Page 12

http://nsrd.info/micromanuals © Preston de Guise

6.3 Syntax Overview

As with other NetWorker interactive commands, one of the most important keywords to remember when
using nsradmin in interactive mode is help. Let’s see what nsradmin will tell us about what it can do.

For the purposes of this topic, it is safe to connect to a running NetWorker server, since we will only be
looking at the configuration, rather than manipulating it.

If you are running nsradmin on the NetWorker server, you can run nsradmin without any arguments; if
you are running nsradmin from another client, you will need to run: nsradmin -s serverName as your
command. Note however that you’ll need to be authorised as a NetWorker administrator from the host
(and user account) you connect from.

For instance, running nsradmin from a storage node, fawn in my lab and connecting to a backup server
tara, I would run the command:

[root@fawn ~]# nsradmin -s tara

NetWorker administration program.

Use the "help" command for help, "visual" for full-screen mode.
nsradmin>

Once nsradmin is running in interactive mode, you’ll see that it prints a “nsradmin>" prompt every time it
expects you to start a command.

To get a list of the commands available, type help at the nsradmin> prompt:

nsradmin> help
Legal commands are:
bind [query]
create attrlist
delete [query]
edit [query]
help [command]
print [query] (set current query)
server [nhame]
show [attrlist]
types
update attrlist
append attrlist
quit
visual [query]
option [list]
unset [list]

. [query]
? [command]

Where:
query ::= attrlist
attrlist ::= attribute [; attribute]*
attribute ::= name [: [value [, valuel*]

Note that not all commands will be the same on Windows and Unix/Linux. For instance, while “edit” and
“visual” appear as valid commands when running help on Windows, attempting to use them will result in
a warning message that the function isn’t available - for example:

nsradmin> edit
External editors are not yet supported
edit operation failed.

© Preston de Guise Page 13

http://nsrd.info/micromanuals

© Preston de Guise

(The “edit” and “visual” modes will not be central to our examples, and so the lack of support for these

options on Windows will not present an issue.)

You can get additional information about a command by typing “help command”, or “? command”, such as:

nsradmin> help show

usage: show [attrlist]

The show command is used to set and clear the show list, which
determines which attributes will be displayed in the"print"

command. If an argument attribute list is given, these attributes
are added to the show list. If no argument is given, the show list
is cleared so that all attributes will be printed. For example, to
show only the attribute "name" you would type:

show name

nsradmin> ? print

usage: print [query] (set current query)

The print command sets the current query if a query argument is
given, then it prints the resource descriptors that match the
current query. If the show list is set (using the "show" command),
only the attributes in the show list will be printed. For example,
to print all resources of type "NSR client" you would type:

print type: NSR client

Another “getting started” command that you should know of is the types command - this gives you a list of

the supported NetWorker resource types for the server that you are running on. This will vary, of course,
depending on the version of NetWorker that you are using:

nsradmin> types

Known types: NSR, NSR client, NSR device, NSR directive,

NSR group, NSR jukebox, NSR label, NSR license,
NSR notification, NSR policy, NSR pool,
NSR schedule, NSR Snapshot Policy, NSR stage,

NSR Storage Node;

Every resource has a type - so clients are of type “NSR client”, policies are of type “NSR policy”, etc.

To get a handle on nsradmin syntax, let’s start by trying to view that Month policy we initially looked at in
“4.1 Resource Database” (starting page 9). As you can see from the above, one of the resource types is NSR
policy. To view a resource, you'd typically use the print command. From the help on the previous page,

you’ll recall that print has the syntax:

print [query] (set current query)

(We'll get to “(set current query)” in a moment.)

A query, as we saw from the help:

Where:
query ::= attrlist
attrlist ::= attribute [; attribute]*
attribute ::= name [: [value [, valuel*]

© Preston de Guise

Page 14

http://nsrd.info/micromanuals © Preston de Guise

So, to start with, we just want to see all the policies. This means we’re just after all the resources that are
of type “NSR policy”. This means our query consists of just a single attribute to start with, and that
attribute is the following “name:value” pair:

type: NSR policy

So our total command is:

nsradmin> print type: NSR policy
type: NSR policy;
name: Month;
comment: ;
period: Months;
number of periods: 1;

type: NSR policy;
name: Quarter;
comment: ;
period: Months;
number of periods: 3;

type: NSR policy;
name: Year;
comment: ;
period: Years;
number of periods: 1;

type: NSR policy;
name: Decade;
comment: ;
period: Years;
number of periods: 10;

type: NSR policy;
name: Week;
comment: ;
period: Weeks;
number of periods: 1;

type: NSR policy;
name: Day;
comment: ;
period: Days;
number of periods: 1;

Whoa! As you can imagine, if we just query by type all the time, we're going to get way too much
information and we’re going to rely on a long scroll buffer in our terminal session.

As it happens, our “Month” policy was the first one printed. However, let’s assume that we’ve got a lot of
resources. (For instance, if you're dealing with a NetWorker server that has 300 active clients, there’ll be
at least 300 client resources - likely more, since each new type of backup for a client will typically have its
own client definition.)

If we want to limit the amount of information shown, we can use the “show” command. In this case, let’s
say we just want to see the resource “name” - nothing else. So our command would be:

nsradmin> show name:
nsradmin> print
name: Month;

name: Quarter;

© Preston de Guise Page 15

http://nsrd.info/micromanuals © Preston de Guise

name: Year;
name: Decade;

name: Day;

name: Week;

Now, we’'ve done something tricky there. See that “print” command? We didn’t specify a query. We didn’t
need to, because of that other part of the syntax description for print, which said: “(set current query)”.
That’s right, when you issue a print <query> command, you implicitly tell NetWorker “Show me X and
make the default query X so that I have a shortcut.” So in this case, because we’d previously issued the
command “print type: NSR policy”, NetWorker interpreted our second print command to also be “print
type: NSR policy”. This query-set behaviour will be instrumental in later activities.

By the way, the colon (:) following the attribute in the show command is optional; you might wish to skip
using it, but I think it adds clarity and consistency to commands, given that colons are required to
separate attributes from their values in other commands.

If you had a lot of resources listed, you could then pick out the name of the resource you wanted, and issue
a more specific print command to nsradmin, making use of that “attrlist” part of the query specification -
more than one attribute, semi-colon separated. In this case, our query specification will become:

type: NSR policy; name: Month

Note that we don’t terminate with a semi-colon. The semi-colon is a attribute separator; if you terminate
the query specification with a semi-colon, nsradmin won’t do anything, because it will be expecting you to
put in another attribute. So using this updated query, we get:

nsradmin> print type: NSR policy; name: Month
name: Month;

Hold on though, there’s more to a policy than just it’s name. Remember - we previously used the “show”
command to restrict ourselves to just viewing the name. This will continue to operate until such time as
we issue another “show” command. In this case, entering “show” by itself will revert to the standard
behaviour of showing everything, meaning our command and output will look like the following:

nsradmin> show
Will show all attributes
nsradmin> print
type: NSR policy;
name: Month;
comment: ;
period: Months;
number of periods: 1;

Again, you'll note that I made use of the query short-cut behaviour - after issuing the “show” command, I
didn’t issue the full print command again, I just typed “print”, and nsradmin filled in the rest for me.

One final thing that we want to look at before finishing is the display options. These control how much
information nsradmin gives you when you run a query. You can view the currently enabled options by
typing the “option” command. As of NetWorker 7.5.x, these options are:

nsradmin> option

Display options:
Dynamic: Off;

© Preston de Guise Page 16

http://nsrd.info/micromanuals

© Preston de Guise

Hidden: Off;

Raw I18N: Off;
Resource ID: Off;
Regexp: Off;

(It should be noted that the final option is not really a display option, but an input option - we’ll get to that

later though.)

To turn a particular option on, you use the command

nsradmin> option <feature>

To turn it back off, you can either use the command

nsradmin> option <features:

of f

Or:

nsradmin> unset <feature>

For instance, let’s turn on “hidden” details, and check the Month policy again:

type:
name:
comment:
period:
number of periods:
nsradmin> option hidden
Hidden display option turned

Display options:
Dynamic: Off;
Hidden: On;
Raw I18N: Off;
Resource ID: Off;
Regexp: Off;
nsradmin> print
type:
name:
comment:
period:
number of periods:
hostname:
administrator:

ONC program number:
ONC version number:
ONC transport:

nsradmin> print type: NSR policy; name: Month

NSR policy;
Month;

Months;
1;

on

NSR policy;
Month;

Months;

1;

tara.pmdg.lab;
"user=root,host=tara.pmdg.lab",
"user=administrator,host=tara.pmdg.lab",
"user=system,host=tara.pmdg.lab";
390109;

2;

TCP;

If you've used the “Diagnostic” mode in NetWorker Management Console in the past, you'll see over time
that the additional attributes that come in when you add turn on the hidden option mostly map to that
mode in NMC.

The “dynamic” display option turns on the display of additional attributes that are considered
intermittent. The “Raw IL8N” turns off rendering of internationalisation text; the “Resource ID” turns on

© Preston de Guise Page 17

http://nsrd.info/micromanuals © Preston de Guise

the display of each resource’s unique ID attribute, and the “Regexp” option, as mentioned before, is more
of an input option, allowing the use of (some) regular expressions.

If you happen to be using an older version of NetWorker and some of the examples suggest to show
particular attributes that don’t subsequently turn up when you run the command, your first port of call
will be to turn on the hidden and dynamic display options - previous versions of NetWorker may not have
always shown requested attributes if those modes weren’t turned on.

When you're done with nsradmin, you can exit it by typing in the command “quit”:

nsradmin> quit

That’s a basic introduction to NetWorker syntax. We’ll move on to more interesting commands next.

6.4 Starting and Stopping Backups

6.4.1 What you’ll need

In order to complete this section of the guide, you’ll need to have configured a Test setup as per section “5
How to do the examples” (page 11). If you are unsure of how to configure this, please refer to “Appendix A
- Test Setup Configuration” (page 57). As a result of this, you should have:

* An ADV_FILE type device with a volume labelled in the “Test” backup pool.

* An ADV_FILE type devices with a volume labelled in the “Test Clone” backup pool.
e Agroup called “Test”.

* Aclient instance for the backup server that has saveset(s) of around 1-3GB.

6.4.2 Monitoring

On Unix/Linux platforms, you may monitor what we’re about to do by running nsrwatch in another
terminal session. Alternatively, on any platform you can monitor what we’re about to do under the
“Monitor” tab for NetWorker Management Console.

6.4.3 Starting a Backup

From within nsradmin, like within NetWorker Management ConsoleZ?, the only type of backup that you can
start at the server interface is a group. There are three ways that a group can be started:

* Automatically, at it’s scheduled time or part of a probe schedule.

* From the command line on the server by running the appropriate savegrp command.

¢ Within NetWorker Management Console or nsradmin by adjusting it’s autostart property to “Start
Now”.

If you've only ever manually run a group in NetWorker Management Console, and you never recall
changing the autostart property to “Start Now”, don’t be concerned. When you start a group out of the
Monitoring area of NMC, you don’t see this option, but that’s what NetWorker does in the background for
you.

While flexible, a primary failing of running a savegroup manually from the command line is that it cannot
be aborted from within either NetWorker Management Console or from a utility such as nsradmin. This
makes managing the backup somewhat challenging. Starting the group from within NMC or nsradmin
takes away that issue though.

2 As of the end of 2009.

© Preston de Guise Page 18

http://nsrd.info/micromanuals

So, let’s look at manually starting our backup using nsradmin

© Preston de Guise

. From the backup server, run:

nsradmin

Update? y

nsradmin> print type: NSR group; name: Test

type: NSR group;
name: Test;
comment: ;
snapshot: False;
autostart: Disabled;
autorestart: Disabled;
start time: "3:33";
last start: ;
last end: ;
interval: "24:00";
restart window: "12:00";
force incremental: Yes;
savegrp parallelism: 0;
client retries: 1;
clones: No;
clone pool: Default Clone;
success threshold: Warning;
options: ;
level: ;
printer: ;
schedule: ;
schedule time: ;
expiration time: ;
inactivity timeout: 30;
File inactivity threshold: 30;

File inactivity alert threshold: 30;

work list: ;
completion: ;
status: idle;
Snapshot Policy: Daily;
Snapshot Pool: Default;
probe based group: False;
probe interval: 60;
probe start time: "0:00";
probe end time: "23:59";
probe success criteria: all;
time since successful backup: 0;

time of the last successful backup: ;
nsradmin> update autostart:
autostart:

Start Now
Start Now;

updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)

So to summarise the above, we:

* Printed, and therefore set the current query to “type: NSR group; name: Test”.

* Issued an update command against the attribute “autostart”, telling NetWorker to change its
value to Start Now.
* When prompted to confirm by NetWorker, answered y to have it go and make the change.

This introduces a new command in nsradmin, the update command. This instructs nsradmin to alter the
resources that match the current query to use the attribute values we're about to specify. What’s important
here is that it works on the current query. If you were to run nsradmin and attempt to run the update
command without first establishing a query, nsradmin will use the default query, which maps to all
resources. This, to be blunt, is something you would normally not want to do.

So without the output at all, our interaction with nsradmin was:

© Preston de Guise Page 19

http://nsrd.info/micromanuals © Preston de Guise

nsradmin> print type: NSR group; name: Test
nsradmin> update autostart: Start Now
<answer'y for yes>

Now, the first thing that you might note is that a group, being a more complex resource than a policy,
produces significantly more output on a print statement. There’s two ways we can effectively reduce this.
The first reduction method, which we’ve already used, is to use the show command first. In this case, we
might ask nsradmin to only show us the name, type and autostart attribute of the resource. In this case,
our session would look like the following:

nsradmin> show name:; type:; autostart:
nsradmin> print type: NSR group; name: Test
type: NSR group;
name: Test;
autostart: Disabled;
nsradmin> update autostart: Start Now
autostart: Start Now;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(7)

This gives the flexibility of seeing a “bare minimum” to confirm that the correct details are going to be
updated.

The second way that you can limit the amount of details to be shown is to use the “dot” command, which
sets the current query but does not print the results of the query. This is something that you should be
careful using - while reducing the amount of output on the screen helps to achieve clarity, going for none
can result in a situation where your query “misses” and selects too much but you don’t notice before you
do an update or delete command. In general I'd usually recommend that you reserve the “dot” command
only for situations where:

* You're scripting, and you've already tested the query
* You've become sufficiently trained in nsradmin that you are very comfortable that you know what
you're doing and you can do a bootstrap recovery at the drop of a hat.

The “dot” command sees the “print” command literally replaced with a full-stop (period). Thus, using the
dot command, we could start the Test group using the following sequence:

nsradmin> . type: NSR group; name: Test
Current query set
nsradmin> update autostart: Start Now
autostart: Start Now;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(12)

The next thing to consider is that we've been changing the autostart attribute from its current value (in
our case, Disabled) to “Start Now”. Normally when you update a value, you'd expect to see that update
stick, right? Well, normally that is the case, but the autostart attribute of the group resource (as well as a
few other attributes across various resources) is a special attribute that supports both regular value
changes as well as action settings. In this case, the value settings permitted are Enabled and Disabled.
The action setting permitted is Start Now. When an attribute is updated with an action setting,
NetWorker will start the action requested, but leave the attribute value in its previous state.

6.4.4 Stopping a Running Backup

If a backup has either been started from within NMC/nsradmin, or started automatically as a scheduled
event, you can use nsradmin to abort the group. We do this by using another attribute, the “Stop Now”
attribute, and a special action setting of “True”.

© Preston de Guise Page 20

http://nsrd.info/micromanuals © Preston de Guise

Following is an example of stopping a group:

nsradmin> show name:; type:; autostart:; stop now:
nsradmin> print type: NSR group; name: Test
type: NSR group;
name: Test;
autostart: Disabled;
stop now: False;
nsradmin> update stop now: True
stop now: True;
Update? y
update failed: Groups must be started either automatically or from the GUI and must be
currently running in order to be stopped.

Now, see what happened above? The previous section went on for long enough that our group finished,
and so there was nothing to stop! (Incidentally, you’ll get the above error message if the group has been
run from the command line using the savegrp command.)

Our challenge here with backing up a single saveset repeatedly is that the incremental changes are going
to be very minor. For the time being, let’'s make sure that every time we run this group, a full backup is

attempted. To do this, we’ll want to:

* Setthe level attribute of the group to full.
* Setthe force incremental attribute of the group to No.

Our command will therefore be:

nsradmin> show type:; name:; force incremental:; level:
nsradmin> print type: NSR group; name: Test
type: NSR group;

name: Test;
force incremental: Yes;
level: ;

nsradmin> update force incremental: No; level: full
force incremental: No;
level: full;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(17)

Doing this will ensure that when we start the group, we’ll have time to stop it before it finishes naturally.
You'll also note we updated more than attribute in a single command.

So start the group again, but then after confirming in your nsrwatch or NMC monitoring session that the
group is running, issue the stop command again:

nsradmin> show
Will show all attributes
nsradmin> show name:; type:; autostart:; stop now:
nsradmin> print type: NSR group; name: Test
type: NSR group;
name: Test;
autostart: Disabled;
stop now: False;
nsradmin> update autostart: Start Now
autostart: Start Now;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(18)

<wait until you can see that the group has started backing up>

© Preston de Guise Page 21

http://nsrd.info/micromanuals © Preston de Guise

nsradmin> update stop now: True
stop now: True;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(21)

6.4.5 Checking the status of a group

There’s very little you can do in NMC or nsrwatch that you can’t (in some form or another) achieve in
nsradmin. Checking the status of a group is one of those things. There are a few attributes that you can
look at within a group to determine its running status:

* status - Indicates whether the group is running, idle or cloning.
* completion - Details of the savesets that have completed, and how they finished.
* worklist - Savesets that have not run yet (pending).

For example, if we look at our just-stopped group, we get some details about where it was up to when it
was aborted, and its current state:

nsradmin> show name:; type:; status:; work list:; completion:
nsradmin> print type: NSR group; name: Test
type: NSR group;

name: Test;
work list: tara.pmdg.lab, "full:index", index;
completion: tara.pmdg.lab, /usr/share, "failed:full:save", "*

tara.pmdg.lab:/usr/share 66135:save: NSR directive file (/.nsr) parsed
* tara.pmdg.lab:/usr/share (interrupted), exiting
* tara.pmdg.lab:/usr/share aborted
* <NOTICE> : termination request was sent to job 19 as requested; Reason given was
'Aborted'";
status: idle;

There’s quite a bit of information in the above output. The first thing to note is the format of the
information in both the work list and the completion attributes. These are presented as multiple-
component values. For work list, a set of 3 components will form a single value, where:

* The first component is the client the saveset is for.
* The second component indicates level and operation.

* The third component indicates the saveset.

So in this case, in the work list above with a value of:

tara.pmdg.lab, “full:index”, index

This equates to a single saveset - the full index backup for the client “tara.pmdg.lab” (which is the backup
server), and an indication that the operation is an index backup

For the completion, there’s actually 4 components to each value - client, saveset, status and messages:

tara.pmdg.lab, /usr/share, "failed:full:save", "* tara.pmdg.lab:/usr/share 66135:save: NSR
directive file (/.nsr) parsed
* tara.pmdg.lab:/usr/share (interrupted), exiting
* tara.pmdg.lab:/usr/share aborted

* <NOTICE> : termination request was sent to job 19 as requested; Reason given was
'Aborted'";

To see the status change for the group while it’s running, start the group again, wait a few seconds, and
then print the details, with the same ‘show’ settings as per the above:

© Preston de Guise Page 22

http://nsrd.info/micromanuals © Preston de Guise

nsradmin> print type: NSR group; name: Test
type: NSR group;

name: Test;
work list: tara.pmdg.lab, "full:index", index;
completion: tara.pmdg.lab, /usr/share, "failed:full:save", "*

tara.pmdg.lab:/usr/share 66135:save: NSR directive file (/.nsr) parsed
* tara.pmdg.lab:/usr/share (interrupted), exiting
* tara.pmdg.lab:/usr/share aborted
* <NOTICE> : termination request was sent to job 19 as requested; Reason given was
'Aborted'";
status: idle;

nsradmin> update autostart: Start Now

autostart: Start Now;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(24)

<wait a few seconds before running the ‘print’ command below>

nsradmin> print
type: NSR group;
name: Test;
work list: tara.pmdg.lab, "full:save", /usr/share,
tara.pmdg.lab, "full:index", index;
completion: ;
status: running;

At this early stage in the group, we can see that the work list remains populated with both savesets that
will be written:

work list: tara.pmdg.lab, "full:save", /usr/share,
tara.pmdg.lab, "full:index", index;

(Depending on how soon you run your command, your output may of course differ.)

You'll note that for the “/usr/share” saveset, the “level:operation” value is “full:save”, rather than
“full:index” as we saw previously (and above) for the index saveset. Since the status check was done
before the first saveset was completed, the completion status remains empty, while the actual group
status shows a value of ‘running’.

6.4.6 Cloning and Monitoring

So far we've only seen two potential states for a group - running, or idle. There is a third state though -
one that’s provided when a group is cloning. To see what this state is like, we’ll need to modify our group
“Test” to clone to the “Test Clone” pool. This is readily accomplished by modifying the attributes as
follows:

* Change the clones attribute to Yes
* Change the clone pool attribute to “Test Clone”.

To better see what we're doing, we’ll also use the “show” setting again to reduce the number of details of
the group to a minimum - name, type, status, autostart, clones and clone pool.

The process of will work as follows:

* Set the show status appropriately.

* Print (and set the current query to) the Test group.
e Update the cloning attributes and run the group.

* Wait until the group starts cloning.

* Print the Test group again to view the new status.

© Preston de Guise Page 23

http://nsrd.info/micromanuals © Preston de Guise

If you're changing the attributes that you want to have shown, be sure to issue the “show” command by
itself first to clear any previous settings.

Here’s what the session will look like:

nsradmin> show name:; type:; status:; clones:; clone pool:; autostart:
nsradmin> print type: NSR group; name: Test
type: NSR group;

name: Test;
autostart: Disabled;
clones: No;

clone pool: Default Clone;
status: idle;
nsradmin> update clones: Yes; clone pool: Test Clone; autostart: Start Now
autostart: Start Now;
clone pool: Test Clone;
clones: Yes;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(31)

<wait for the backup to finish, and the cloning to start>

nsradmin> print
type: NSR group;
name: Test;
autostart: Disabled;
clones: Yes;
clone pool: Test Clone;
status: cloning;

Between group status checking, and device status checking (a topic we'll cover before the end of this
chapter), you have the ability to fairly closely see what your NetWorker server is up to, just from within
nsradmin.

6.5 Append vs Update

So far when we’ve been altering settings in NetWorker resources, we've been using the update command.
There’s another command, append, which works in a different, but equally useful way.

Let’'s move away from groups for the moment, and consider clients. In particular, one of the most critical
attributes for a client is its save set setting. While normally this should be set to “All” for filesystem backup
client instances, there may be times when it’s necessary to have individually named save sets3.

To check out our current client save set status, let’s have a look at its settings, restricting just to type,
name and save set. Assuming you’ve just come from doing the group section before, you’ll first need to
clear your show settings:

nsradmin> show
Will show all attributes
nsradmin> show name:; type:; save set:
nsradmin> print type: NSR client; name: tara
type: NSR client;
name: tara.pmdg.lab;
save set: /usr/share;

3 A time that springs most readily to mind is when completing the exercises in the “nsrd.info micromanual for
nsradmin”.

© Preston de Guise Page 24

http://nsrd.info/micromanuals © Preston de Guise

(In the above example, be sure to replace the backup server name with the name of the host you're using
to work through this micromanual.)

Now that we've got the client details available to us, let’s consider the difference between update and
append:

* The update command tells nsradmin to completely replace the current attribute values with
whatever values you specify;

* The append command tells nsradmin to add, to multi-value attributes, additional values you
specify.

(It should be clear from the above that you can’t use append if the attribute field doesn’t support it - e.g.,
you can’t append “Start Now” to the autostart attribute.)

If we wanted to change the client definition so that it had an extra saveset - keeping /usr/share, but
adding another one - say for instance, “/etc”, using update our work would be twice as much effort. Since
an update command is an instruction to nsradmin to replace the value of an attribute, you’d have to
specify saveset values of both /usr/share and /etc. However, to make life easier for us, we can instead use
the append command. Our entire sequence is therefore:

nsradmin> show
Will show all attributes
nsradmin> show name:; type:; save set:
nsradmin> print type: NSR client; name: tara
type: NSR client;
name: tara.pmdg.lab;
save set: /usr/share;
nsradmin> append save set: /etc
save set: /etc;
Append? y
updated resource id 74.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(5)
nsradmin> print
type: NSR client;
name: tara.pmdg.lab;
save set: /usr/share, /etc;

There you go - a time saving update thanks to the append command.

Since in this case, Windows will be slightly different due to the need to escape backslashes (i.e., use \\
instead of \) and keep paths in quotes, we’ll look at how this would work on a Windows client as well:

© Preston de Guise Page 25

http://nsrd.info/micromanuals © Preston de Guise

ey CHWINDOWS' system32'cmd.exe - nsradmin

C:\Documents and Settings\preston>nsradmin
NetWorker administration program.
Use the “help" command for help.
nsradmin> show name:; type:; save set:
nsradmin> print type: NSR client; name: cyclops
type: NSR client;
name: cyclops.pmdg.locals;
save set: “C:\\WINDOWS\\SYSTEM32";
nsradmin> append save set: YC:\\TEMP"
save set: Y“C:\\TEMP"Y;
Append? y
updated resource id 75.0.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.58.5(3>
nsradmin?> print
type: NSR client;
name: cyclops.pmdyg.local;
save set: “C:N\\WINDOWSN\\SYSTEM32",. YC:\\TEMP";
nsradmin)> _

Figure 2: Using the append command with Windows paths

As an aside, remember previously I said you couldn’t append a value to a single-value attribute. Here’s an
example of what you'd get if you tried:

nsradmin> print type: NSR group; name: Test
type: NSR group;
name: Test;
nsradmin> append autostart: Start Now
autostart: Start Now;
Append? y
append failed: autostart has too many values

6.6 Setting up Regular Backup Components

So far, we've relied on our resources already existing, and we’ve just been modifying them or getting
NetWorker to perform specific actions with them. Now however, we want to look at creating new
resources.

To do this, we're going to setup the core components that would typically be used in a new NetWorker
configuration, notably:

Browse/Retention Policies
Schedules

Groups

Clients

Pools

A

Rather than using the NetWorker Management Console for any of these, we’ll do the complete setup from
within nsradmin.

6.6.1 Browse and Retention Policies
As you would know from using NetWorker Management Console, a policy is neither a browse, nor a

retention policy, until you go ahead and assign it to the appropriate setting for a client or a pool. We'll
setup both “Daily” and “Monthly” policies, with the policy details being:

© Preston de Guise Page 26

http://nsrd.info/micromanuals © Preston de Guise

* Daily - Defining a period of 5 weeks.
* Monthly - Defining a period of 13 months.

When creating a new NetWorker resource and you're not familiar with nsradmin, the easiest way to get a
handle on it is to look at an existing resource. We already know from previous sections that there’s a
Month policy, so let’s look at that again:

nsradmin> print type: NSR policy; name: Month
type: NSR policy;
name: Month;
comment: ;
period: Months;
number of periods: 1;

So, this tells us of the attributes that we’re going to need to set:

* type
* name
* period

* number of periods

A quick way of seeing some of the period types that are available is to restrict our display to just the
period, and then view all policies:

nsradmin> show period:

nsradmin> print type: NSR policy
period: Months;
period: Years;
period: Weeks;
period: Months;
period: Days;
period: Years;

nsradmin> show
Will show all attributes

This won’t always work - sometimes the preconfigured resources won'’t tell you enough information. In
those cases it's useful to resort to the command reference guides. For instance, on Unix/Linux, you can
view the documentation for any resource type by running “man nsr_type” - e.g, in this instance, “man
nsr_policy”. (These manual pages are included in the NetWorker command reference documentation.)

So, we want to create a Monthly policy that gives a time period of 13 months, and a Daily policy that gives
a time period of 5 weeks. Our commands will then be:

nsradmin> create type: NSR policy; name: Daily; period: Weeks;
number of periods: 5

type: NSR policy;

name: Daily;

period: Weeks;
number of periods: 5;

Create? y
created resource id 120.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
nsradmin> create type: NSR policy; name: Monthly; period: Months;
number of periods: 13

type: NSR policy;

name: Monthly;

© Preston de Guise Page 27

http://nsrd.info/micromanuals © Preston de Guise

period: Months;
number of periods: 13;
Create? y
created resource id 121.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

Note:

* You can see above that the command was spread across two lines. Commands that deal with
resources can either be specified as a single, very long line, or as multiple lines, so long as there’s
a semi-colon at the end of each non-finishing line (i.e., each line finishes with “attribute: value;”)
so that nsradmin knows to expect more input on the command.

If you want to verify that these have been created, issue a print command against them:

nsradmin> print type: NSR policy; name: Monthly

number of periods:

number of periods:

type: NSR policy;
name: Monthly;
comment: ;
period: Months;

13;

nsradmin> print type: NSR policy; name: Daily

type: NSR policy;
name: Daily;
comment: ;
period: Weeks;

5;

That’s our policies setup and now waiting for clients and pools to be associated with them.

6.6.2 Schedules

Our next stop is to configure a Daily and a Monthly schedule for our backups. These will work as follows:

* Daily schedule - Fulls on Friday, incrementals the rest of the time, with the last Friday of every
month skipped to allow for the Monthly schedule to run.

* Monthly schedule - Skips every day of the month, except for the last Friday of the month, where
it does a full backup.

If you've only ever worked with schedules from within NMC, schedules are going to look a little peculiar to
you in nsradmin. Let’s look at the Default schedule first:

nsradmin> print type: NSR schedule; name: Default

type: NSR schedule;
name: Default;
comment: ;
period: Week;
action: full incr incr incr incr incr incr;
override: ;

If you're wondering what these attributes are for:

* period - Specifies the schedule period - either week, or month. This effectively defines how the
action list is to be interpreted.

* action - A list of level backups to be performed on consecutive days. For a week schedule, this
action list covers Sunday through to Saturday, in that order. For a month schedule, the action list
covers the 1st through to the 31st, in that order.

* override - Any special changes to the backup to suit particular dates or special days.

© Preston de Guise Page 28

http://nsrd.info/micromanuals © Preston de Guise

If you think creating schedules would have to be easier in the GUI, I'll hopefully have you convinced
otherwise once I take you through a series of short-cuts!

Let’s first consider the Daily schedule that we want to create. We want:

* Fulls on Friday
* Incrementals the rest of the time
e Skip the last Friday every month

The first two requirements translate to attributes such that:

* period is defined as “Week”
e action is defined as “incr incr incr incr incr full incr”

We can take our first short-cut here, by the way - nsradmin doesn’t need the full word for each of those

short-cut though is our override. We don’t want this schedule to run on the last Friday of every month. In
traditional calendar view creation of schedules in NMC, this would necessitate going through each month
and setting a manual override on the final Friday of every month. However, like the non-calendar view of
NMC, nsradmin supports a “set once” style override here, being:

* override defined as “skip last friday every month”

So, our create statement will look like the following:

nsradmin> create type: NSR schedule; name: Daily; period: Week;
action: i i i i i f i; override: skip last friday every month
type: NSR schedule;
name: Daily;
period: Week;
action: i i i i i f 1i;
override: skip last friday every month;

Create? y

Next we have to create our Monthly schedule, and that’s going to involve an additional shortcut. You'll
recall we want our Monthly schedule to:

* Skip every day of the month except for the last Friday of the month
* Do a full backup on the last Friday of the month

You could, if you wanted to, create an action list of “skip skip skip skip ... skip” with 31 entries in it. We
already know we can shorten the level names, so you could at least shorten it to “s s s s ... s”, with 31
instances of the letter “s” instead.

Another way to go about it would be to change the period type to “Week” and then just use an action list
with only 7 entries in it: “s s s s s s s”. That seems like a pretty good short-cut - but there’s an even better
short-cut yet. To get to that, we have to look at how the action list works.

As [mentioned before, for a schedule of period type “Month”, the action list is typically defined as having
31 entries. What, you might ask, happens if the schedule is defined for 31 days however and the month it
is evaluated for only has 30, 29 or 28 days? Well in these instances, any “extra” days in the action list are
ignored. There’s no 31 February, ever, so the 31st entry in an action list will never be evaluated in
February.

Taking the opposite approach to this, action lists also support fewer entries than the defined time period,
too. If you wanted for instance to create a backup schedule that did a full backup every day, rather than
literally defining your action list as “full full full full full full full”, you can instead define it just as “full”. In
this case, when NetWorker evaluates the schedule, if the action list is smaller than the defined period, it
will simply keep on looping the action list on top of itself until it builds up an action list that matches the

© Preston de Guise Page 29

http://nsrd.info/micromanuals

defined period. So it would instantiate “full” to “full full full full full full full” without any additional effort

on your part.

We can use that loop/fill action list behaviour as an “ultimate” short-cut to creating the Monthly schedule,

© Preston de Guise

and so our create command will become:

nsradmin> create type: NSR
action: s; override: full
type:
name :
period:
action:
override:
Create? y

schedule; name: Monthly; period: Month;
last friday every month

NSR schedule;

Monthly;

Month;

S;

full last friday every month;

created resource id 124.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

There you have it - a Monthly schedule that does exactly what we want created in minimal time.

This is one of those rare cases where it's particularly useful to see in NMC that what we did worked

correctly:

(<IN Properties

Name: I Daily

Period: [Week

Comment: I I
|December ~| [2009 B December 29, 2009
Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5
i i i f i

6 7 8 9 10 11 12

i i i i i f i
13 14 15 16 17 18 19

i i i i i f i
20 21 22 23 24 25 26

i i i i i *skip! i
27 28 29 30 31

i i i i i
e Cancel

Figure 3: Daily schedule created in nsradmin, as viewed from NMC

© Preston de Guise

http://nsrd.info/micromanuals

8,060

Properties

Name: | Monthly

Period: [Month

Comment: l l
|December ~| [2009 B December 29, 2009
Sun Mon Tue Wed Thu Fri Sat

1 2 3 4 5
s s s s
6 7 8 9 10 11 12
s s s s s
13 14 15 16 17 18 19
s s s s s
20 21 22 23 24 25 26
s s s s *full
27 28 29 30 31
s s s
e Cancel

Figure 4: Monthly schedule created in nsradmin, as viewed from NMC

6.6.3 Groups

© Preston de Guise

Now that we’ve created our schedules, we can move on to create our groups, since for the purposes of our
example, we want to force all clients that backup as part of the group to run the same level each day.

As for when we created the policies and the schedules, we’ll want to check out an existing group first to
see what its settings are. Rather than using our current “Test” group, which will contain a bunch of
additional information regarding recent backups, we'll pick a group that shouldn’t have had a backup yet
- the Default group:

type:

name :

comment:

shapshot:
autostart:
autorestart:

start time:

last start:

last end:
interval:

restart window:
force incremental:
savegrp parallelism:
client retries:
clones:

clone pool:
success threshold:
options:

level:

NSR group;
Default;

False;
Disabled;
Disabled;
"3:33";

’

"24:00";
"12:00";

Yes;

0;

1;

No;

Default Clone;
Warning;

’

nsradmin> print type: NSR group; name: Default

© Preston de Guise

Page 31

http://nsrd.info/micromanuals © Preston de Guise

printer: ;
schedule: ;
schedule time: ;
expiration time: ;
inactivity timeout: 30;
File inactivity threshold: 30;
File inactivity alert threshold: 30;
work list: ;
completion: ;
status: idle;
Snapshot Policy: Daily;
Snapshot Pool: Default;
probe based group: False;
probe interval: 60;
probe start time: "0:00";
probe end time: "23:59";
probe success criteria: all;
time since successful backup: 0;
time of the last successful backup: ;

We want to create two groups. Our Daily group will start at 21:35, use the “Daily” schedule, and be
configured to automatically start. So the attributes we want to set when creating are:

* type - NSR group

* name - Daily

* autostart - Enabled
e starttime - “21:35”
* schedule: Daily

There are two things to note about the start time. The first, obviously, is that our start time is in the
evening; that’s because the schedule we’re assigning to the group has full backups run on a Friday, so
we're talking about starting groups after the business day rather than before the business day.

The second, and far more important thing to note about the start time is that it’s specified within double-
quotes. The reason for this is that the colon (:) is a special character for nsradmin, being used as a
separator between an attribute name and its value. Therefore, if a value includes the colon character, the
value must be in double quotes.

So our create command for the Daily group will be:

nsradmin> create type: NSR group; name: Daily; autostart: Enabled;
start time: "21:35"; schedule: Daily
type: NSR group;
name: Daily;
autostart: Enabled;
start time: "21:35";
schedule: Daily;
Create? y
created resource id 125.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

Our create command for the Monthly group will be reasonably similar, bearing in mind that it should not
start at exactly the same time as the Daily group, and it will need to use the Monthly schedule:

nsradmin> create type: NSR group; name: Monthly; autostart: Enabled;
start time: "21:40"; schedule: Monthly
type: NSR group;
name: Monthly;
autostart: Enabled;
start time: "21:40";
schedule: Monthly;

© Preston de Guise Page 32

http://nsrd.info/micromanuals © Preston de Guise

Create? y
created resource id 126.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

Normally we’d also configure cloning, but we need to have pools setup for that, so we’ll come back to that
in a little while.

6.6.4 Clients

Our next step is to create a couple of clients. For the purposes of this sample configuration, we won’t
worry about having real clients. Instead, setup the hosts file on your NetWorker server with entries such
as:

testl
test2

10.117.118.119
10.117.118.120

testl.my.lab
test2.my.lab

The above subnet is a private one, so shouldn’t interfere with anything else. Check however before setting
up these entries that these addresses really don’t appear on your network. If they do, choose another set
of entries in an empty 10.X.Y subnet.

On Unix/Linux systems, you can setup these entries by editing /etc/hosts; on a Windows system, the file
will be typically be found in the “system32\drivers\etc” directory, named “hosts”. (On a standard install of
Windows 2003, for instance, you should expect to find the local hosts file with a full path of
C:\windows\system32\drivers\etc\hosts.)

Next, we need to create these clients within NetWorker. We will follow the newer style of setting up
clients in NetWorker, where each client belongs to both groups, using the longer browse/retention period,
and the appropriate pool having the correct retention period specified as an override.

Again we'll look at an existing client resource to get an idea of the sorts of settings we’ll want to specify. In
this case, we’ll look at the current client in the Test group - there should be only one, the one for our
backup server itself:

nsradmin> print type: NSR client; group: Test
type: NSR client;
name: tara.pmdg.lab;
server: tara.pmdg.lab;
client id: \
923bf5a2-00000004-4b37bc9b-4b37bc9a-00011c00-dfb3d342;

remote access:

remote user:

password:

backup command:
application information:
ndmp :

scheduled backup: Enabled;
comment: ;
Save operations: ;
archive services: Disabled;
schedule: Default;
browse policy: Month;
retention policy: Year;

File inactivity alert threshold: 0;

’

statistics: elapsed = 102253, index size (KB) = 40244,
amount used (KB) = 40244, entries = 263529;
directive: ;
group: Test;
save set: /usr/share, /etc;
Backup renamed directories: Disabled;
priority: 500;
File inactivity threshold: 0;

© Preston de Guise

Page 33

http://nsrd.info/micromanuals © Preston de Guise

NDMP array name: ;
De-duplication backup: No;
De-duplication node: ;
Probe resource name: ;
virtual client: No;
physical host: ;
Proxy backup type: ;
Proxy backup host: ;
executable path: ;
server network interface: ;
aliases: tara, tara.pmdg.lab;
index path: ;
owner notification: ;
parallelism: 12;
archive users: ;
storage nodes: nsrserverhost;
recover storage nodes: ;
clone storage nodes: ;
hard links: Disabled;
short filenames: Disabled;
BMR: Disabled;
BMR options: ;
backup type: ;
client 0S type: Linux;
CPUs: 1;
NetWorker version: 7.5.1.Build.413;
enabler in use: Yes;
licensed applications: ;
licensed PSPs: ;

There’s a lot of attributes there (and that’s with dynamic/hidden attributes turned off), and we don’t have
to set all of those today. We'll just limit ourselves to:

* type

* name

* browse policy

* retention policy
* group

* saveset

* parallelism

* aliases

As you may have guessed by now — NetWorker will fill in attributes that you leave out when the resource
is created. This is quite handy, and works the same way that resource creation does within NetWorker

Management Console.

Looking at our first client, test1, our create command will be:

nsradmin> create type: NSR client; name: testl;
browse policy: Monthly; retention policy: Monthly;
group: Daily, Monthly; save set: All; parallelism: 1;
aliases: testl, testl.my.lab

type: NSR client;

name: testl;

Create? y

browse policy: Monthly;
retention policy: Monthly;
group: Daily, Monthly;
save set: All;
aliases: testl, testl.my.lab;
parallelism: 1;

© Preston de Guise

Page 34

http://nsrd.info/micromanuals

© Preston de Guise

created resource id 127.0.152.

62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

Our second client can be created with a similar command:

browse policy: Monthly;

type:
name:
browse policy:
retention policy:
group:
save set:
aliases:
parallelism:
Create? y
created resource id 128.0.152.

nsradmin> create type: NSR client; name: test2;
retention policy: Monthly;
group: Daily, Monthly; save set: All; parallelism: 1;
aliases: test2, test2.my.lab

NSR client;

test2;

Monthly;

Monthly;

Daily, Monthly;

All;

test2, test2.my.lab;
1;

62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

While not all of these attributes are required, it's worthwhile when creating clients being in the habit of at
least specifying the above. It forces you, for instance, to conduct performance tuning on the client backups
by starting with a parallelism of 1, and reminds you to think about the different aliases a host may have.

6.6.5 Pools

Our next-to-last components to be setup are the pools. We'll define four pools - Daily, Daily Clone,
Monthly and Monthly Clone. Don’t worry; these pools are for demonstration purposes only, so we won't
need a bunch of additional disk backup units or media.

Let’s start, as we always do, by looking at an existing pool. In this case, we’ll look at the Default pool:

type:

name:

comment:

enabled:

pool type:

label template:
retention policy:
groups:

clients:

save sets:

levels:

devices:

store index entries:
auto media verify:
Recycle to other pools:
Recycle from other pools:
volume type preference:
max parallelism:

mount class:

WORM pool:

create DLTWORM:

barcode prefix:

nsradmin> print type: NSR pool; name: Default

NSR pool;
Default;
Yes;
Backup;
Default;

0;
default;
No;

No;

’

As is always the case, there’s a bunch of attributes in a pool that for regular setups we don’t need to

consider. For our setup though, we

type
name

© Preston de Guise

"Il need to provide settings for:

Page 35

http://nsrd.info/micromanuals © Preston de Guise

* enabled

* pooltype

* groups

* retention policy

* store index entries

* auto media verify

* Recycle to other pools

* Recycle from other pools

The last two entries, normally turned off for pools, are used to replace the need for a Scratch pool within
NetWorker. Rather than putting media in one “special” pool to subsequently pull out when media is
needed in another pool, NetWorker allows us to specify that pools can take (recyclable) media from other
pools, and donate recyclable media to other pools.

The third last option, auto media verify should be something that you turn on for most, if not all pools. For
a small performance hit, it actually does verification reads on parts of savesets, making it a powerful tool

in ensuring your backups are recoverable. (Or rather, at least confirming that the media is readable.)

The “store index entries” is normally “on” for a pool, and that’s fine for our backup pools, but when we
make our backup clone pools, it will need to be off.

So, let’s first look at our Daily pool, and how it is created:

nsradmin> create type: NSR
groups: Daily; auto media
recycle from other pools:

Create? y

type:

name:

enabled:

pool type:

retention policy:

groups:

auto media verify:
recycle to other pools:
recycle from other pools:

created resource id 129.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

pool; name: Daily; enabled: Yes; pool type: Backup;
verify: Yes; recycle to other pools: Yes;
Yes; retention policy: Daily

NSR pool;

Daily;

Yes;

Backup;

Daily;

Daily;

Yes;

Yes;

Yes;

Note - if you get an alert about needing a label template, or to re-create the resource to automatically
create a label template - it’s time to upgrade to a more recent version of NetWorker!

Our Daily Clone pool will be quite similar - but we don’t specify any groups for a Clone pool, and we tell
NetWorker not to store index entries for it:

nsradmin> create type: NSR
pool type: Backup Clone;
auto media verify: Yes;
recycle from other pools:

Create? y

type:

name :

enabled:

pool type:

retention policy:

store index entries:
auto media verify:
recycle to other pools:
recycle from other pools:

pool; name: Daily Clone; enabled: Yes;
store index entries: No;
recycle to other pools: Yes;

Yes; retention policy: Daily

NSR pool;

Daily Clone;

Yes;
Backup Clone;

Daily;

No;

Yes;

Yes;

Yes;

created resource id 130.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

© Preston de Guise

Page 36

http://nsrd.info/micromanuals © Preston de Guise

Our Monthly, and Monthly Clone pools will be quite similar, with the appropriate basic modifications,
namely:

1. For the Monthly Pool, the group changes from “Daily” to “Monthly”.
2. For both the Monthly and Monthly Clone pools, the retention policy changes from “Daily” to
“Monthly”.

Our create commands will therefore resemble:

nsradmin> create type: NSR pool; name: Monthly; enabled: Yes;
pool type: Backup; groups: Monthly; auto media verify: Yes;
recycle to other pools: Yes; recycle from other pools: Yes;
retention policy: Monthly
type: NSR pool;
name: Monthly;
enabled: Yes;
pool type: Backup;
retention policy: Monthly;
groups: Monthly;
auto media verify: Yes;
recycle to other pools: Yes;
recycle from other pools: Yes;
Create? y
created resource id 131.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
nsradmin> create type: NSR pool; name: Monthly Clone; enabled: Yes;
pool type: Backup Clone; store index entries: No; auto media verify: Yes;
recycle to other pools: Yes; recycle from other pools: Yes;
retention policy: Monthly
type: NSR pool;
name: Monthly Clone;
enabled: Yes;
pool type: Backup Clone;
retention policy: Monthly;
store index entries: No;
auto media verify: Yes;
recycle to other pools: Yes;
recycle from other pools: Yes;
Create? y
created resource id 132.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

We're almost there! The last thing we have to do is modify our groups to automatically clone, which we’ll
do by going back to our groups, below.

6.6.6 Revisiting our Groups

Now that our pools have been established, we can modify the Daily group to clone to the Daily Clone pool,
and the Monthly group to clone to the Monthly Clone pool. We've previously done this when we
configured the Test group to clone, so this process should be relatively straightforward:

nsradmin> show name:; clones:; clone pool:
nsradmin> print type: NSR group; name: Daily
name: Daily;
clones: No;
clone pool: Default Clone;
nsradmin> update clones: Yes; clone pool: Daily Clone
clone pool: Daily Clone;
clones: Yes;
Update? y
updated resource id 125.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)
nsradmin> print type: NSR group; name: Monthly
name: Monthly;

© Preston de Guise Page 37

http://nsrd.info/micromanuals © Preston de Guise

clones: No;
clone pool: Default Clone;
nsradmin> update clones: Yes; clone pool: Monthly Clone
clone pool: Monthly Clone;
clones: Yes;
Update? y
updated resource id 126.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)

At this point, we've completed a standard setup process covering policies, schedules, groups, clients and
pools.

6.7 Monitoring Devices

Another basic activity that you should know how to do with nsradmin is monitoring devices while
activities are currently running. This is relatively easy, and is handy to know how to do.

Let’s look at a device. If you're on Unix/Linux, the command (and output) should be along the following
lines:

nsradmin> print type: NSR device; name: /backupl

type: NSR device;
name: /backupl;
comment: ;
description:

message_I18N: "writing, done ";
message: "writing, done ";
volume name: Backup.001;
media family: disk;
media type: adv_file;
enabled: Yes;
read only: No;
target sessions: 4;
max sessions: 512;
parent jukebox: ;
cleaning required: No;
cleaning interval: ;
date last cleaned: ;
auto media management: No;
ndmp: No;
dedicated storage node: No;
remote user: ;
password: ;
hardware id: ;
CDI: Not used;
TapeAlert Critical: ;
TapeAlert Warning: ;
TapeAlert Information: ;
WORM capable: No;
DLTWORM capable: No;
WORM cartridge present: No;
device serial number: ;

On Windows, change the name from “/backup1” to “X:\\NSR\\01”, where X was the drive letter where
the disk backup units were created. For example, this might resemble the following:

© Preston de Guise Page 38

http://nsrd.info/micromanuals © Preston de Guise

cv CHWINDDOWS'\system32'\.cmd.exe - nsradmin

C:\Documents and Settings\preston>nsradmin
Netllorker administration program.
Use the "help" command for help.
nsradmin?> print type: NSR device; name: "E:\\NSR\\@1"
type: NSR device;
name: “E:N\\NSR\\@1";
comment: ;
description: ;
message_JI18N: mounted adv_file disk Backup.061;
message: mounted adv_file disk Backup.861;
volume name: Backup.861;
media family: disks;
media type: adv_file;
enabled: Yes;
read only: No;
target sessions: 4;
max sessions: 512;
parent Jjukebox:
cleaning required: No;
cleaning interval:
date last cleaned:
auto media management: Noj;
ndmp: No;
dedicated storage node: No;
remote user: ;

Figure 5: Viewing a device resource in Windows
The fields in particular that we want to look at when monitoring devices are:

* message
* message_[18N

What we’ll now do is restart out Test group from before, and monitor what the devices do, both on
backup, then clone.

To do this, we'll run through the following steps:

Start the Test group.

Update our show command to just show name, message, and message_I18N.
Print (and set the query for) the current devices.

Periodically re-print the status during the backup.

BN

This will resemble the following:

nsradmin> . type: NSR group; name: Test
Current query set
nsradmin> update autostart: Start Now
autostart: Start Now;
Update? y
updated resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(38)
nsradmin> show name:; message:; message_I18N
nsradmin> print type: NSR device
name: /backupl;
message_I18N: "writing at 16 MB/s, 100 MB, 2 sessions";
message: "writing at 16 MB/s, 100 MB, 2 sessions";

name: /backupl/_AF_readonly;

message_I18N: "reading, done ";

message: "reading, done ";
name: /backup2/_AF_readonly;

message_I18N: space recovered from volume Clone.@01.RO;

message: space recovered from volume Clone.@01.RO;

name: /backup?2;

© Preston de Guise Page 39

http://nsrd.info/micromanuals © Preston de Guise

message_I18N: "writing, done ";

message: "writing, done ";

Once cloning starts, we should see output of the form:

nsradmin> print
name: /backupl/_AF_readonly;
message_I18N: "reading, data ";

message: "reading, data ";

name: /backupl;
message_I18N: "writing, idle ";

message: "writing, idle ";

name: /backup2/_AF_readonly;
message_I18N: space recovered from volume Clone.@01.RO;
message: space recovered from volume Clone.001.RO;

name: /backup?2;
message_I18N: "writing at 49 MB/s, 98 MB";
message: "writing at 49 MB/s, 98 MB";

(Note - if you are working in an English-only environment, you can choose to leave off the message_[18N
attribute from your show command.)

As you can see by this - even if you have a NetWorker server running on Windows and can’t get to NMC,
you can at least check to see what the devices are doing.

6.8 Deleting Resources

Our last basic exercise sees us deleting our Daily/Monthly setup. This not only demonstrates the delete
command, but also leaves you in a position to reattempt any of the exercises in the previous section if
necessary.

There’s two ways that the delete command can work:

* Run by itself, delete, it will offer to delete the resources that match the currently set query.
* Run with a query, delete query set the current query and offer to delete the resources that match
that just-set query.

If you're wondering which you should use, I'll tell you now that I never run delete without specifying a
query as well. Regardless of whether it is supported or not, [very strongly recommend against doing so.
All examples provided here will work from providing the query with the delete command.

As you might imagine, NetWorker (usually) doesn’t let you delete resources that have dependencies. For
instance, you can’t delete a group if it is still referenced by a pool, etc. So sometimes, in order to delete, we
have to backtrack part of the configuration.

The first resources that we can delete though are the clients - these aren’t named anywhere else, so it’'s
safe to get rid of them with the commands:

nsradmin> show name:; save set:; group:
nsradmin> delete type: NSR client; group: Daily
name: testl;
group: Daily, Monthly;
save set: All;
Delete? y
deleted resource id 127.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

© Preston de Guise Page 40

http://nsrd.info/micromanuals © Preston de Guise

name: test?2;
group: Daily, Monthly;
save set: All;
Delete? y
deleted resource id 128.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

You'll note there that we didn’t issue a delete command for each client, but rather, on an attribute we
knew to be unique for all of the clients we needed to delete - in this case, belonging to the Daily group.

Moving on, it would be handy if we deleted our groups - Daily and Monthly. However, these currently
belong to the Daily and Monthly pools - if we try to unassign those groups from the pools, we'll get in

trouble from NetWorker since pools must have unique attributes - e.g.,:

nsradmin> show name:; enabled:; groups:
nsradmin> print type: NSR pool; name: Daily
name: Daily;
enabled: Yes;
groups: Daily;
nsradmin> update groups:
groups: ;
Update? y
update failed: There must be at least one selection criterion
(groups, clients, save sets or levels) set
when creating or updating a non-clone pool.

You'll note there that I used the special way of clearing an attribute:

update groups:

There’s an attribute there, but no value. That’s how you take the current value away from an attribute
without putting in a new one. (Now, in this case, because of pool configuration requirements, we weren’t

allowed to do that, but it’s worth knowing how to do this.)

So, we'll first need to delete our Daily and Monthly pools:

nsradmin> delete type: NSR pool; name: Monthly
name: Monthly;
enabled: Yes;
groups: Monthly;
Delete? y
deleted resource id 131.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
nsradmin> delete type: NSR pool; name: Daily
name: Daily;
enabled: Yes;
groups: Daily;
Delete? y
deleted resource id 133.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

In older versions of NetWorker, you might have had to then go and clear the Daily Clone and Monthly
Clone pools from the Daily and Monthly groups, but newer versions of NetWorker will unfortunately

allow you to delete the Clone pool while still having it referenced!

nsradmin> delete type: NSR pool; name: Daily Clone
name: Daily Clone;
enabled: Yes;
groups: ;
Delete? y
deleted resource id 130.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
nsradmin> delete type: NSR pool; name: Monthly Clone

© Preston de Guise

Page 41

http://nsrd.info/micromanuals © Preston de Guise

name: Monthly Clone;
enabled: Yes;
groups: ;

Delete? y
deleted resource id 132.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

Now we can move on to deleting the groups, which means we’re heading into the home stretch:

nsradmin> show
Will show all attributes

nsradmin> show name:; clones:; clone pool:
nsradmin> delete type: NSR group; name: Daily
name: Daily;
clones: Yes;
clone pool: Daily Clone;
Delete? y

deleted resource id 125.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)
nsradmin> delete type: NSR group; name: Monthly

name: Monthly;
clones: Yes;
clone pool: Monthly Clone;

Delete? y
deleted resource id 126.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)

If you were wondering what would happen if NetWorker goes to run one of those groups, and then clone
but the pool doesn’t exist - the clone will fail. It’s a situation best to be avoided.

With the groups, pools, and clients out of the way, we can now push through and delete our schedules:

nsradmin> delete type: NSR schedule; name: Daily
name: Daily;
Delete? y
deleted resource id 123.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
nsradmin> delete type: NSR schedule; name: Monthly
name: Monthly;
Delete? y
deleted resource id 124.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

You’'ll note there that the “show” command previously issued is still in effect; however, of the three
attributes configured to be shown - name, clones and clone pool, only “name” is valid for a schedule, so
only “name” is shown. We’ll turn the show restrictions back off to delete our policies:

nsradmin> show
Will show all attributes
nsradmin> delete type: NSR policy; name: Daily

Delete? y

Delete? y

deleted resource id 120.0.152.62.0.0.0.0.154
nsradmin> delete type: NSR policy; name: Monthly

type: NSR policy;
name: Daily;
comment: ;
period: Weeks;
number of periods: 5;

type: NSR policy;
name: Monthly;
comment: ;
period: Months;
number of periods: 13;

deleted resource id 121.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192

© Preston de Guise

.188.55.75.0.0.0.0.192.168.50.7(1)

.168.50.7(1)

http://nsrd.info/micromanuals © Preston de Guise

There you have it - we’ve now backtracked out of all the components we setup for our Daily/Monthly
configuration.

6.9 Closing Comments

When it comes to nsradmin, practice makes perfect. If anything in this section hasn’t made sense, or you
want to repeat it, be sure to follow the steps in the previous section - 6.8, “Deleting Resources” (starting
page 40), in order to reset the NetWorker configuration to try again.

© Preston de Guise Page 43

http://nsrd.info/micromanuals © Preston de Guise

7 Advanced nsradmin

7.1 Introduction

Our previous chapter (6, “Operational Basics”, starting page 12) gave a reasonably thorough overview to
how one works with nsradmin as part of an interactive session. This chapter will primarily deal with ways
that one can interact with nsradmin in a non-interactive mode.

The nature of advanced nsradmin usage is that what you do in it will depend entirely on your local
circumstances. Therefore, this chapter will be shorter than the previous chapter. That doesn’t reflect that
there’s not many advanced things you can do with nsradmin, but instead more that those advanced things
will need you to decide what to do.

7.2 Bulk Activities

Our first advanced use for nsradmin is in bulk activities. Let’s say that an additional 20 servers are going to
be added to your environment. They’ll all be standard systems without databases, which means that
either from using NMC, or nsradmin in interactive mode, there’s going to be a lot of tedious work in setting
them up.

However, we can do it as a non-interactive nsradmin session fairly quickly, using a combination of
copy/paste and quick editing in a text file.

To start with, we’re obviously going to need host entries again - NetWorker won’t let us create clients
without a means of resolving them, and the easiest way to get resolution running for a lab situation is to

populate the hosts file.

Previously we discussed setting up hosts entries of the form:

10.117.118.119 testl testl.my.lab
10.117.118.120 test2 test2.my.lab

Now, let’s setup another 18, so that they read:

10.117.118.119 testl testl.my.lab
10.117.118.120 test2 test2.my.lab
10.117.118.121 test3 test3.my.lab
10.117.118.122 test4 testd.my.lab
10.117.118.123 test5 test5.my.lab
10.117.118.124 test6 test6.my.lab
10.117.118.125 test? test7.my.lab
10.117.118.126 test8 test8.my.lab
10.117.118.127 test9 test9.my.lab
10.117.118.128 testl@ testl@.my.lab
10.117.118.129 testll testll.my.lab
10.117.118.130 testl2 testl2.my.lab
10.117.118.131 testl3 testl3.my.lab
10.117.118.132 testl4 testld.my.lab
10.117.118.133 testl5 testl5.my.lab
10.117.118.134 testlo testl6.my.lab
10.117.118.135 testl? testl7.my.lab
10.117.118.136 testl8 testl8.my.lab
10.117.118.137 testl9 testl19.my.lab
10.117.118.138 test20 test20.my.lab

© Preston de Guise Page 44

http://nsrd.info/micromanuals © Preston de Guise

For the purposes of our example only, we’ll use some more “Default” settings in NetWorker. In a real-
world situation, we’d already have groups, schedules, pools, etc., setup. So instead of going through and
setting all these up, we'll just specify the name, aliases and parallelism, and rely on NetWorker to establish
the browse/retention policy as well as the group for us.

Next, create a text file that contains the following lines:

create type: NSR client; name: testl; aliases: testl, testl.my.lab; parallelism:
create type: NSR client; name: test2; aliases: test2, test2.my.lab; parallelism:
create type: NSR client; name: test3; aliases: test3, test3.my.lab; parallelism:
create type: NSR client; name: test4; aliases: test4, test4.my.lab; parallelism:
create type: NSR client; name: test5; aliases: test5, test5.my.lab; parallelism:
create type: NSR client; name: test6; aliases: test6, test6.my.lab; parallelism:
create type: NSR client; name: test?7; aliases: test7, test7.my.lab; parallelism:
create type: NSR client; name: test8; aliases: test8, test8.my.lab; parallelism:
create type: NSR client; name: test9; aliases: test9, test9.my.lab; parallelism:
create type: NSR client; name: testl@; aliases: testl®, testl@.my.lab; parallelism:
create type: NSR client; name: testll; aliases: testll, testll.my.lab; parallelism:
create type: NSR client; name: testl2; aliases: testl2, testl2.my.lab; parallelism:
create type: NSR client; name: testl3; aliases: testl3, testl3.my.lab; parallelism:
create type: NSR client; name: testl4; aliases: testl4, testl4.my.lab; parallelism:
create type: NSR client; name: testl5; aliases: testl5, testl5.my.lab; parallelism:
create type: NSR client; name: testl6; aliases: testl6, testl6.my.lab; parallelism:
create type: NSR client; name: testl7; aliases: testl?7, testl7.my.lab; parallelism:
create type: NSR client; name: testl8; aliases: testl8, testl8.my.lab; parallelism:
create type: NSR client; name: testl9; aliases: testl9, testl19.my.lab; parallelism:
create type: NSR client; name: test20; aliases: test20, test20.my.lab; parallelism:

PR R RRRPRRLRRERE

PR R RRPRRPRRRERRLRERE

Save the file as “bulk-create.nsri”. (Include a blank line at the bottom of the command file, so that
regardless of which operating system you're on, there won’t be any issues to do with end-of-file points.)

Now, in the previous section, every time we've gone to create resources in NetWorker, we’'ve been
prompted to confirm, “yes” to go ahead and create each resource. This isn’t the case when we run in non-
interactive mode. To invoke nsradmin in non-interactive mode, simply run:

nsradmin -i file

Where “file” is the path to the file and its name. Note that while not mandatory, it is recommended to
supply this as an absolute, rather than relative path, as at various times there have been bugs in nsradmin
that have caused it to fail when being invoked with a command file or database from a relative path.

In this case, assuming we’ve saved the file as /tmp/bulk-create.nsri, and we’re not in that directory, we’d
simply run:

[root@tara ~]# nsradmin -i /tmp/bulk-create.nsri

created resource id 134.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 135.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 136.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 137.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 138.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 139.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 140.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 141.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 142.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 143.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 144.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 145.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 146.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 147.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

© Preston de Guise Page 45

http://nsrd.info/micromanuals

© Preston de Guise

created
created
created
created
created
created

resource
resource
resource
resource
resource
resource

id
id
id
id
id
id

148.0.152.
149.0.152.
150.0.152.
151.0.152.
152.0.152.
153.0.152.

62.
62.
62.
62.
62.
62.

(SSRGS SIS
Soosoes
Soosoes
Sosososes

.154.
.154.
.154.
.154.
.154.
.154.

188.
188.
188.
188.
188.
188.

55.
55.
55.
55.
55.
55.

JA A S
Soscees
Sosoees
Sooses
Sososees

~

.192.
.192.
.192.
.192.
.192.
.192.

168.
168.
168.
168.
168.
168.

50.
50.
50.
50.
50.
50.

7(1)
7(1)
7(1
7(1)
7(1)
7(1)

There you have it. With very little preparation time, you’'ve added 20 clients to a NetWorker configuration.

Not even NetWorker Fast Start will get you that level of speed saving!

Backing out of this configuration change is very easy using bulk operations as well. Let’s create a text file
now that has the following content:

delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete
delete

type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR
type: NSR

client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;
client;

name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:
name:

testl
test2
test3
test4
test5
test6
test?
test8
test9
testl10
testll
testl2
testl3
testl4
testl5
testl6
testl?7
testl8
testl19
test20

Assuming this has been saved as /tmp/bulk-delete.nsri, you can run:

deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted
deleted

resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource
resource

id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id
id

134.
135.
136.
137.
138.
139.
140.
141.
142.
143.
144.
145.
146.
147.
148.
149.
150.
151.
152.
153.

(SIS CEISIICST S B B IECSRCSEGS B IS B IS IS IS B I G

62.0.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.
62.

(SIS IS RIS RIS ISR SRS BN RGNS B RIS NG B ISSIEGS BS R
SRS S o S N R R R R R RN
SRS R S S S S R R RS
SRS S o S S S Y R R R R

.0.

Q.

154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.
.154.

188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.
188.

55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.
55.

[root@tara ~]# nsradmin -i /tmp/bulk-delete.nsri
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.
.152.

75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.
75.

[SAS IS IICRIS ISR BGS B GRS BN RGNS B GICSIEGS B I G S
SRS S S S S S N R R RN
SRS S o S N N R R R RN R W
SRS R S o S S S N R R R R R

.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.
.192.

168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.
168.

50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.

7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1
7(1)
7(1)
7(1
7(1)
7(1)

As you can see, bulk updates are relatively straightforward.

© Preston de Guise

Page 46

http://nsrd.info/micromanuals © Preston de Guise

7.3 Scripting with nsradmin

7.3.1 Intended Goal

Let’s say you run an environment where you want the support staff responsible for setting up new servers
to be able to have simple commands they can run to interactively fill in the details required for new clients
within NetWorker.

This means being able to script with your NetWorker server.
Note: For the examples below scripts will be kept as basic as possible, performing no input validation, etc.
For more comprehensive scripting of nsradmin, you are advised to (a) use a “good” scripting language,

such as Perl or Python (rather than say, DOS shell scripting), and (b) perform input validation to ensure
that the values you feed through to nsradmin are acceptable.

7.3.2 Introductory scripting
We'll start with something a little less ambitious, as a test case. Consider a scenario where (for some
reason), you want a script that will create a new day-based policy for you after you supply a policy name

and a number of days.

On Windows, you might call this script “create-policy.bat” and it would have the following content:

@echo off

echo Creating a new policy

set /p name="Enter policy name:
set /p days="Enter number of days:

> command.nsri echo create type: NSR policy; name: %name%;
>> command.nsri echo period: Days; number of periods: %days%
>> command.nsri echo print type: NSR policy; name: %name%

nsradmin -i command.nsri
del command.nsri

Running this might result in a session such as the following:

cv Command Prompt

C:\Temp>create.hat
Creating a new policy
Enter policy name: Leap Year
Enter number of days: 366
created resource id 128.0.44.15.0.6.0.6.98.36.57.75.0.0.0.0.192.168.58.5{1>
type: NSR policy;
name: Leap Year;
comment: ;
period: Days;
numbher of periods: 366;

C:\Temp>_

Figure 6: Using the create-policy.bat script on Windows

© Preston de Guise Page 47

http://nsrd.info/micromanuals © Preston de Guise

On Unix systems, using Perl, we could do a similar function with the following script, named “create-
policy.pl” and made executable:

#!/usr/bin/perl -w

use strict;

print "Enter policy name: ";

my $policyName = <>; chomp $policyName;
print "Enter number of days: ";
my $numDays = <>; chomp $numDays;

if (open(CMD,">command-$$.nsri")) {
print CMD "create type: NSR policy; name: $policyName;\n";
print CMD "period: Days; number of periods: $numDays\n";
print CMD "print type: NSR policy; name: $policyName\n";
close(CMD);
system("nsradmin -i command-$$.nsri");
unlink("command-$$.nsri");

} else {
die "Unable to create command-$$.nsri\n";

}

The output from such a script might resemble the following:

[root@tara ~]# ./create-policy.pl
Enter policy name: Leap Year
Enter number of days: 366
created resource id 154.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
type: NSR policy;
name: Leap Year;
comment: ;
period: Days;
number of periods: 366;

7.3.3 Preliminary Setup

In order for a client creation script to work, we have to work on the basis of there being a bunch of
resources already present - pools, groups and schedules are a good start. To make things easier, we'll
present all the commands below for recreating the Daily/Monthly setup discussed in Chapter 6,
“Operational Basics”, (starting page 12), plus a couple of extra resources.

Create a new text file called “create-resources.nsri’, with the following content:

create type: NSR policy; name: Daily; period: Weeks; number of periods: 5
create type: NSR policy; name: Monthly; period: Months; number of periods: 13

create type: NSR schedule; name: Daily; period: Week;

action: i i i 1 1 f i; override: skip last friday every month
create type: NSR schedule; name: Monthly; period: Month;
action: s; override: full last friday every month

create type: NSR group; name: Daily; autostart: Enabled;

start time: "21:35"; schedule: Daily

create type: NSR group; name: Daily MSSQL; autostart: Enabled;
start time: "21:55"; schedule: Daily

create type: NSR group; name: Monthly; autostart: Enabled;

start time: "21:40"; schedule: Monthly

create type: NSR group; name: Monthly MSSQL; autostart: Enabled;
start time: "22:00"; schedule: Monthly

© Preston de Guise Page 48

http://nsrd.info/micromanuals

© Preston de Guise

create
groups:
recycle
retenti
create
groups:
recycle
retenti
create

recycle
retenti
create

recycle
retenti

. type:
update
. type:
update

. type:
update
. type:
update

type: NSR pool; name: Daily; enabled: Yes; pool type: Backup;
Daily, Daily MSSQL; auto media verify: Yes;

to other pools: Yes; recycle from other pools: Yes;
on policy: Daily
type: NSR pool; name: Monthly; enabled: Yes; pool type: Backup;
Monthly, Monthly MSSQL; auto media verify: Yes;

to other pools: Yes; recycle from other pools: Yes;
on policy: Monthly
type: NSR pool; name: Daily Clone; enabled: Yes;

pool type: Backup Clone; auto media verify: yes;

to other pools: Yes; recycle from other pools: Yes;
on policy: Daily; store index entries: No
type: NSR pool; name: Monthly Clone; enabled: Yes;

pool type: Backup Clone; auto media verify: yes;

to other pools: Yes; recycle from other pools: Yes;
on policy: Monthly; store index entries: No

NSR group; name: Daily

clones: Yes; clone pool: Daily Clone
NSR group; name: Daily MSSQL
clones: Yes; clone pool: Daily Clone

NSR group; name: Monthly

clones: Yes; clone pool: Monthly Clone
NSR group; name: Monthly MSSQL
clones: yes; clone pool: Monthly Clone

Note: You can download pre-created files from the website that contain the above nsradmin commands. A

single zip file containing both a Unix format file and a Windows format file can be retrieved from:

http://nsrd.info/micromanuals/resources/nsradmin/733_create.zip

When run, this will produce output along the lines of:

[root@t
created
created
created
created
created
created
created
created
created
created
created
created
Current
updated
Current
updated
Current
updated
Current
updated

ara ~]# nsradmin -i create-resources.nsri

resource id 165.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 166.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 167.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 168.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 169.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 170.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 171.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 172.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 173.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 174.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 175.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
resource id 176.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
query set

resource id 169.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
query set

resource id 170.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
query set

resource id 171.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.
query set

resource id 172.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.

50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.
50.

50.

50.

50.

50.

7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)
7(1)

7(2)
7(2)
7(2)
7(2)

© Preston de Guise

Page 49

http://nsrd.info/micromanuals © Preston de Guise

7.3.4 A Client Creation Script

Now that we’ve got a basic script done, let’s look at a script for adding new clients. This time, let’s look at
the script in Unix/Linux first. It might resemble the following:

#!/usr/bin/perl -w
use strict;

my $hostname = "tara";
print "Enter new client name: ";
my $newClient = <>; chomp $newClient;

print "Should new client have MSSQL module enabled? (y/n) ";
my $module = <>; chomp $module;

if (open(NEWCL,">new-client-$$.nsri")) {
print NEWCL "create type: NSR client; name: $newClient;\n";
print NEWCL "group: Daily, Monthly; browse policy: Monthly;\n";
print NEWCL "retention policy: Monthly; parallelism: 1\n";

if ($module eq "y") {
print NEWCL "create type: NSR client; name: $newClient;\n";
print NEWCL "group: Daily MSSQL, Monthly MSSQL;\n";
print NEWCL "browse policy: Monthly;\n";
print NEWCL "retention policy: Monthly;\n";
print NEWCL "backup command: nsrsqlsv.exe -s $hostname;\n";
print NEWCL "save set: \"MSSQL:\"\n";

1

close(NEWCL);

system("nsradmin -i new-client-$$.nsri™);
unlink("new-client-$$.nsri™);

} else {
die "Could not create new-client-$$.nsri\n";

}

”m

Be sure to change the NetWorker server hostname in the line ‘my $hostname = “tara
lab NetWorker server.

to the name of your

Sample run sessions from the above script might look like the following:

[root@tara ~]# ./create-client.pl

Enter new client name: testll

Should new client have MSSQL module enabled? (y/n) y
created resource id 181.0.152.62.0.0.0.0.154.188.55.
created resource id 182.0.152.62.0.0.0.0.154.188.55.

75.0.0.0.0.192.168.50.7(1)
75.0.0.0.0.192.168.50.7(1)
[root@tara ~]# ./create-client.pl

Enter new client name: testl3

Should new client have MSSQL module enabled? (y/n) n

created resource id 183.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)

In the first session, you’ll note that two resources were created - one for the filesystem backup, the other
for the SQL server backup. In the second session, only the filesystem backup instance was created.

Next, let’s look at the script required for client creation on Windows.

@echo off
set server=cyclops

© Preston de Guise Page 50

http://nsrd.info/micromanuals © Preston de Guise

echo Creating a new client
set /p name="Enter new client name:
set /p module="Should new client have MSSQL module enabled? (y/n) "

> command.nsri echo create type: NSR client; name: %name%;
>> command.nsri echo group: Daily, Monthly; browse policy: Monthly;
>> command.nsri echo retention policy: Monthly; parallelism: 1

if %module¥%==y (

>> command.nsri echo create type: NSR client; name: %name¥%;

>> command.nsri echo group: Daily MSSQL, Monthly MSSQL;

>> command.nsri echo browse policy: Monthly; retention policy: Monthly;
>> command.nsri echo backup command: nsrsqlsv.exe -s %server%;

>> command.nsri echo save set: "MSSQL:"

D

nsradmin -i command.nsri
del command.nsri

Be sure to change the NetWorker server hostname in the line ‘set server=cyclops’ to the name of your lab

NetWorker server.

With the script created and saved as “create-client.bat”, sample run session results are as follows:

¢t Command Prompt

C:\Temp>create—client.hat

Creating a new client

Enter new client name: testl

Should new client have MSSQL module enabled? {(y/n) vy

created resource id 141.0.44.15.60.0.6.0.98.36.57.75.0.0.60.0.192.168.50.5{1)
created resource id 142.0.44.15.0.0.60.0.98.36.57.75.0.0.0.0.192.168.50.5{1)>

C:\Temp>create—client.hat

Creating a new client

Enter new client name: test2

Should new client have MSSQL module enabled? <{(y/n)> n

created resource id 143.0.44.15.0.0.60.0.98.36.57.75.0.0.0.0.192.168.50.5{1)

C:\Temp>_

Figure 7: Output from the "create-client.bat"” script on Windows

7.4 Connecting to the Client Services

So far, we’ve concentrated on connecting to the NetWorker server daemons. However, nsradmin supports

connecting to other NetWorker services as well - most notably the client services.

If you'll recall the original usage output for nsradmin’s usage details, you’ll remember it looks like this:

[root@tara ~]# nsradmin -?

usage: nsradmin [-c] [-1 file] [-s server] [-p {prognum | progname} 7]
[-v version] [query]...

usage: nsradmin [-c] [-1 file] [-d resdir] [-t typefile] ... [query]...

usage: nsradmin [-c] [-1i file] [-f resfile] [-t typefile] ... [query]...

© Preston de Guise Page 51

http://nsrd.info/micromanuals © Preston de Guise

In order to connect to the client service, we'll run nsradmin using both the “-s” option, and the “-p” option.
The program number in this case is 390113 (if wondering why, run “rpcinfo -p yourServerName” and
look for 390113) - or, a program name of nsrexec. Note that when connecting to a client NetWorker
service, the “-s” option refers not to the NetWorker server, but the server/host running the service you
want to connect to.

For the moment restricting ourselves just to the NetWorker server’s client service, run nsradmin against
the server and do a plain “print” command:

[root@tara ~]# nsradmin -s tara -p nsrexec

NetWorker administration program.
Use the "help" command for help, "visual" for full-screen mode.

nsradmin> print

type:

name:

NW instance info operations:
NW instance info file:
installed products:

NSRLA;
tara.pmdg.lab;

’

EMC NetWorker 7.5.1.Build.413 12/11/09;

version:
servers: ;
auth methods: "0.0.0.0/0,nsrauth/oldauth";
administrator: root, "user=root,host=tara.pmdg.lab";
kernel arch: x86_64;
CPU type: x86_64;
machine type: desktop;
0S: Linux 2.6.18-128.2.1.el5;
NetWorker version: 7.5.1.Build.413;
client 0OS type: Linux;
CPUs: 1;
MB used: 12334;
IP address: 192.168.50.7, "fe80::21c:42ff:fed3:b3df%eth@";
type: NSR remote agent;
name: Filesystem;

backup type:
product version:

Filesystem;

’

remote agent protocol version: 1;
features: Configuration, List Directory;
remote agent executable: nsrfsra;
backup type icon: ;
type: NSR log;
administrator: root, "user=root,host=tara.pmdg.lab";

owner: NetWorker;
maximum size MB: 2;
maximum versions: 10;

runtime rendered log:

’

name: daemon.raw;
log path: /nsr/logs/daemon.raw;
type: NSR peer information;
administrator: root, "user=root,host=tara.pmdg.lab";

name:
peer hostname:

Change certificate:
certificate file to load:

nimrod.pmdg.lab;
nimrod.pmdg.lab;

’

This gives us several pieces of information. (If you do this against an active NetWorker server, by the way,
expect to see one “NSR peer information” resource for each NetWorker client that has
contacted/communicated with the NetWorker server at least once.)

© Preston de Guise Page 52

http://nsrd.info/micromanuals © Preston de Guise

One of the more useful components reported is the “NSRLA” type. This provides us a chunk of useful
information about the client we’re communicating with, including, but not limited to:

* The authorisation methods supported;

* The version of NetWorker installed;

* The recognised NetWorker administrators (this list will not be provided if the accessing user
doesn’t have authority to see that list);

* The architecture and operating system type;

* The amount of space used across its filesystems (“MB used”);

* The IP addresses.

This in itself is useful information that can be used to check the status of clients. However, if we look at
say, the “NSR log” component:

nsradmin> print type: NSR log
type: NSR log;
administrator: root, "user=root,host=tara.pmdg.lab";

owner: NetWorker;

maximum size MB: 2;
maximum versions: 10;
runtime rendered log: ;
name: daemon.raw;
log path: /nsr/logs/daemon.raw;

(If you have installed and started NetWorker Management Console, you’ll have additional entries here.)
One of the more interesting options here is the “runtime rendered log”, which is an attribute which allows
you to tell NetWorker where to put a standard “daemon.log” file, in addition to the 7.4.x style daemon.raw

file.

Thus, you could tell NetWorker to generate the log by using the command:

nsradmin> update runtime rendered log: /nsr/logs/daemon.log
runtime rendered log: /nsr/logs/daemon.log;
Update? y
updated resource id 12.0.206.8.0.0.0.0.11.164.58.75.0.0.0.0.192.168.50.7(2)

Note that for a Windows system, the path to the log should be enclosed in double quotes, and backslashes
should be escaped, as per normal for Windows paths in nsradmin.

For further examples of adjustments to the NSR log resource, go to:
http://nsrd.info/blog/2009/07 /28 /basics---realtime-rendered-logs-and-other-log-options/
Note that changes to the client services typically don’t take effect until you stop and restart NetWorker.

Another common area where you can use nsradmin on the client services is to correct those pesky “NSR
peer information” errors. An article covering this on the NetWorker blog can be found at:

http://nsrd.info/blog/2009/02 /23 /basics-fixing-nsr-peer-information-errors/

While you're more likely to run nsradmin against the server services, knowing that you can run it against
client services (and how to) is an important tool in the arsenal of a NetWorker Power User.

© Preston de Guise Page 53

http://nsrd.info/micromanuals © Preston de Guise

7.5 Using regular expressions in nsradmin

Perhaps more so than any other topic we’ve covered so far, it's worth reiterating the importance of always
ensuring your nsradmin query works properly before running an action against it (e.g., update, append or
delete). The reason for this is that if you're someone who uses regular expressions frequently, you may be
surprised by how and when they can fail within nsradmin.

Teaching how regular expressions work is certainly beyond the scope of this micromanual, as entire
books are dedicated to the intricacies of this topic. However, to bastardise the description, let’s say that
regular expressions (in NetWorker parlance at least) are about being able to use the primary wildcard
character, asterisk (*) in queries. (Beyond this, your experience with regular expressions and nsradmin
will be somewhat ... poor.)

Let’s start with a basic example - we’d like to print out all the clients that start with “test” in their names.
Based on the Unix create-client.pl output from the previous section, this might run as follows:

nsradmin> option regexp
Regexp display option turned on

Display options:
Dynamic: Off;
Hidden: Off;
Raw I18N: Off;
Resource ID: Off;
Regexp: On;
nsradmin> show name:; backup command:; save set:; group:
nsradmin> print type: NSR client; name: test*
name: testll;
group: Daily, Monthly;
save set: All;
backup command: ;

name: testll;
group: Daily MSSQL, Monthly MSSQL;
save set: "MSSQL:";
backup command: nsrsqglsv.exe -s tara;

name: testl3;
group: Daily, Monthly;
save set: All;
backup command: ;

You’ll note that the first thing done was to actually turn on regexp mode. If we hadn’t, our session would
have looked quite different:

nsradmin
NetWorker administration program.
Use the "help" command for help, "visual" for full-screen mode.
nsradmin> show name:; backup command:; save set:; group:
nsradmin> print type: NSR client; name: test*
No resources found for query:

name: test*;

type: NSR client;

In this case, without regexp turned on, NetWorker expected to literally find a client named “test*”, rather
than any client whose name started with “test”.

Unfortunately, EMC’s implementation of regexp support within nsradmin is extremely limited at best.

Let’s look at a command where we want to retrieve all clients whose name ends with 11. Based on the
previous regexp enabled search, we know this should succeed. However:

© Preston de Guise Page 54

http://nsrd.info/micromanuals © Preston de Guise

nsradmin> option regexp
Regexp display option turned on

Display options:
Dynamic: Off;
Hidden: Off;
Raw I18N: Off;
Resource ID: Off;
Regexp: On;
nsradmin> print type: NSR client; name: *11
No resources found for query:
name: *11;
type: NSR client;

It is unfortunate that EMC has implemented such a limited version of regexp support in nsradmin - better
enabled, this would even further extend the scripting and power-user options available within the utility.

With this in mind, that pretty much represents the extent to which regular expressions can currently be
used in nsradmin.

7.6 Offline Mode

For the majority of this micromanual, we've concentrated on online mode access in nsradmin, where we
connect to a running NetWorker server and work with its running configuration.

What we haven’t covered is running nsradmin in offline mode. This is where, instead of invoking it with
just a plain:

nsradmin

Or, against a server:

C:\> nsradmin —-s serverName

We run it against a directory containing a resource configuration database.

NOTE: Under no circumstances should you ever run nsradmin in offline mode against a running
NetWorker server’s configuration database. Doing so could cause irreparable damage
necessitating a bootstrap recovery.

To look at offline mode, we’ll shutdown our NetWorker services. On Unix/Linux, this can be done with the
command:

/etc/init.d/networker stop

On Windows, you can do it from the services control snap-in, or you can instead just run, at the command
prompt:

C:\> net stop nsrexecd /y

Once this has been done, we’ll check out what it's like to run nsradmin against the NetWorker
configuration database in offline mode. On Unix/Linux, this might resemble the following:

nsradmin -d /nsr/res/nsrdb
NetWorker administration program.
Use the "help" command for help, "visual" for full-screen mode.

© Preston de Guise Page 55

http://nsrd.info/micromanuals © Preston de Guise

nsradmin> print type: NSR policy; name: Month
type: NSR policy;
comment: ;
name: Month;
number of periods: 1;
period: Months;

You can see there that we've invoked NetWorker differently. We’ve told it to run against a resource
configuration directory, located in “/nsr/res/nsrdb”.

Moving across to Windows, we can do the same thing, with the result looking like the following:

¢ Command Prompt - nsradmin - Program Files'Legato',

C:\Temp>net stop nsrexecd /y
The following services are dependent on the NetlWorker Remote Exec Service servic

e.
Stopping the Netllorker Remote Exec Service service will also stop these services

NetlWorker Backup and Recover Server

The NetlWorker Backup and Recover Server service was stopped successfully.

The NetlWorker Remote Exec Service service was stopped successfully.

C:\Temp>nsradmin —-d "C:\Program Files\Legato\nsr\res\nsrdbh"
NetlWorker administration program.
Use the “help" command for help.
nsradmin> print type: NSR policy; name: Month
type: NSR policy;
comment: ;
name: Month;
number of periods: 1;
period: Months;

nsradmin>

Figure 8: Running nsradmin in offline mode

That’s all for offline mode, and for one very critical reason - many of the input validation/safety checks
performed by the NetWorker server when you work with nsradmin don’t get done when working in offline
mode. Therefore, even as a power-user, you should avoid running nsradmin in offline mode against a
resource configuration database unless your support provider has advised you to.

© Preston de Guise Page 56

http://nsrd.info/micromanuals © Preston de Guise

8 Appendix A — Test Setup Configuration

As outlined in section “5 How to do the examples” (page 11), the examples in this micromanual assume a
testing configuration established on an otherwise unused NetWorker server. This Appendix will take you
through the steps required to establish this configuration.

8.1 From NetWorker Management Console

From within the NetWorker management console, create:

¢ 2 x Disk backup devices using an appropriate path.
o For Unix/Linux, you might use: /backupl and /backup?2 for Unix/Linux;
o For Windows, you might use E:\NSR\01 and E:\NSR\02 for Windows.
* These paths must already exist, and should have at least 5GB free.
e Agroup called Test.
¢ Apoolcalled Test, with the Test group in it.
* Apoolcalled Test Clone, as a clone pool.
* Mount/label an ADV_FILE volume on the first disk backup path in the Test pool.
* Mount/label an ADV_FILE volume on the second disk backup path in the Test Clone pool.
* Modify the NetWorker server client resource to have a single directory as the save set, picking a
directory that is somewhere between 1 and 3 GB. Also modify the client to belong to the Test
group.

Note:

* Step-by-step instructions for creating these resources are not supplied for a very specific
purpose. This manual is targeted at NetWorker Power Users. If you need instruction on setting up
these resources within the NetWorker Management Console, some additional experience in
NetWorker would be strongly recommended before attempting this manual.

8.2 From Unix/Linux Command Line

8.2.1 Resource Configuration Setup
Assuming you have a freshly installed NetWorker server that has just been started for the first time:

1. Create a directory called “/backup1”.

2. Create a directory called “/backup2”4.

3. Create a text file called “bootstrap-tutorials.nsri” with the content shown in the box below,
replacing any instance of the word “yourServerNameHere” with your current NetWorker
server’s name.

4. Run the command (as root): nsradmin -i bootstrap-tutorials.nsri

create type: NSR device; name: /backupl; media type: adv_file
create type: NSR device; name: /backup2; media type: adv_file
create type: NSR group; name: Test

. type: NSR client; name: yourServerNameHere; save set: All
update group: Test; save set: /usr/share

create type: NSR pool; name: Test; groups: Test; pool type: Backup

4 Directories of “/backup1” and “/backup2” assume (a) at least 5GB free in the root filesystem and (b) that you have
administrative privileges on the host that you are working from. If this is not the case, consult your system
administrator for access to a suitable location.

© Preston de Guise Page 57

http://nsrd.info/micromanuals © Preston de Guise

create type: NSR pool; name: Test Clone; store index entries: no; pool type: Backup Clone

Note:

* It is recommended to leave a blank line on the bottom of any nsradmin script file. This ensures
maximum compatibility across platforms.

The output from running the command should appear similar to the following:

[root@tara ~]# nsradmin -i bootstrap-tutorials.nsri

created resource id 113.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 114.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
created resource id 115.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(1)
Current query set

updated resource id 74.0.152.62.0.0.0.0.154.188.55.75.0.0.0.0.192.168.50.7(2)
created resource id 116.0.152.62. 154.188.55.7 .192.168.50.7(1)
created resource id 117.0.152.62. 154.188.55.7 .192.168.50.7(1)

S S
S
S
S

0.0.0.0. 5.0.0.
0.0.0.0. 5.0.0.

Note that numbers in the resource IDs are likely to appear differently on your system.

Don’t worry if those commands don’t yet make sense to you -we’ll work on all those and more
throughout the micromanual.

8.2.2 Volume Setup

We have created two disk backup units - /backup1 and /backup2. Now we need to label them. We will
create a volume called “Backup.001” in the “Test” pool on disk backup unit /backup1, and a volume called
“Clone.001” in the “Test Clone” pool on disk backup unit /backup2:

[root@tara ~]# nsrmm -b Test -m -1 -f /backupl Backup.001

[root@tara ~]# nsrmm -b "Test Clone" -m -1 -f /backup2 Clone.001
[root@tara ~]# nsrmm

adv_file disk Clone.@@1 mounted on /backup2, write enabled

adv_file disk Clone.@@1.RO mounted on /backup2/_AF_readonly, write protected
adv_file disk Backup.@@1.RO mounted on /backupl/_AF_readonly, write protected
adv_file disk Backup.@@1 mounted on /backupl, write enabled

8.3 From Windows Command Line

8.3.1 Resource Configuration Setup
Assuming you have a freshly installed NetWorker server that has just been started for the first time:

Create a directory called “X:\NSR” (where X is the path to an appropriate drive)

Create a directory called “X:\NSR\01” (where X is the path to an appropriate drive)

Create a directory called “X:\NSR\02” (where X is the path to an appropriate drive)s

Create a text file called “bootstrap-tutorials.nsri”, with the content shown in the box below,
replacing any instance of the word “yourServerNameHere” with your current NetWorker
server’s name.

BN

5 The directories specified should have at least 5GB free on the nominated drive, and you have should administrative
privileges on the host that you are working from. If this is not the case, consult your system administrator for access
to a suitable location.

© Preston de Guise Page 58

http://nsrd.info/micromanuals © Preston de Guise

5. Run the command (as an account in the Administrator group): nsradmin -i bootstrap-
turorials.nsri
create type: NSR device; name: "E:\\NSR\\Q1"; media type: adv_file
create type: NSR device; name: "E:\\NSR\\@2"; media type: adv_file
create type: NSR group; name: Test
. type: NSR client; name: yourServerNameHere; save set: All
update group: Test; save set: "C:\\WINDOWS\\SYSTEM32"
create type: NSR pool; name: Test; groups: Test; pool type: Backup
create type: NSR pool; name: Test Clone; store index entries: no; pool type: Backup Clone
Note:

It is recommended to leave a blank line on the bottom of any nsradmin script file. This ensures
maximum compatibility across platforms.

Out of the box on Windows, NetWorker does not support creating disk backup units directly off
the root directory (\) of a drive. Please ensure to create the appropriate subdirectory structure to
ensure your commands work.

Adjust paths for disk backup devices and the directory to be backed up appropriately, but
remember to always keep Windows paths in double quotes, and whenever a single backslash (\)
would be used in Windows, use two (\\) for nsradmin.

The output from running this command should appear similar to the following:

cv CAWINDDWS'\ system32cmd.exe

C:\Documents and Settings\preston>nsradmin —-i hootstrap—tutorials.nsri
created resource id 117.60.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.58.5{1)
created resource id 118.60.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.58.5{1)
created resource id 119.6.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.58.5¢1)
Current guery set

C:\Documents and Settings\preston>

resource id 75.0.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.50.5(2>
resource id 120.0.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.580.5{1)
resource id 121.6.44.15.0.0.0.0.98.36.57.75.0.0.0.0.192.168.58.5<{1>

Figure 9:

Bootstrapping the NetWorker configuration required for the micromanual on Windows

8.3.2 Volume Setup

We have created two disk backup units. In the example given, these were created at “E:\NSR\01” and
“E:\NSR\02”. Now, we need to label them. We will create a volume called Backup.001 in the “Test” pool on
disk backup unit “E:\NSR\01”, and a volume called “Clone.001” in the “Test Clone” pool on disk backup
unit “E:\NSR\02"”. Please adjust your paths accordingly if your devices were created on alternate paths:

© Preston de Guise Page 59

http://nsrd.info/micromanuals © Preston de Guise

HWINDOWS system32'cmd.exe - 0] x|

C:\Documents and Settings\preston>nsrmm —h Test —-m -1 —f YE:\NSR\B1" Backup.881 E

C:\Documents and Settings\preston>nsrmm —h "“Test Clone" —-m -1 —f "E:\NSR\GB2" Clo
ne .0601

C:\Documents and Settings\preston>nsrmm

adv_file disk Clone.B81.RO mounted on E:\NSR\B2_AF_readonly, write protected
adv_file disk Clone.B81 mounted on E:\NSR\B2, write enabhled

adv_file disk Backup.B@1.RO mounted on E:\NSR\Bi_AF_readonly, write protected
adv_file disk Backup.@81 mounted on E:\NSR\@1, uwrite enabled

C:\Documents and Settings\preston>_

Figure 10: Labelling media in the ADV_FILE devices on Windows

You'll see in the above output, by the way, that it was not necessary to “escape” the backslashes (i.e., use
\\ instead of \) in the nsrmm commands.

© Preston de Guise Page 60

